- -

Commercial polycarbonate track-etched membranes as substrates for low-cost optical sensors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Commercial polycarbonate track-etched membranes as substrates for low-cost optical sensors

Mostrar el registro completo del ítem

Martinez-Perez, P.; García-Rupérez, J. (2019). Commercial polycarbonate track-etched membranes as substrates for low-cost optical sensors. Beilstein Journal of Nanotechnology. 10:677-683. https://doi.org/10.3762/bjnano.10.67

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140187

Ficheros en el ítem

Metadatos del ítem

Título: Commercial polycarbonate track-etched membranes as substrates for low-cost optical sensors
Autor: Martinez-Perez, Paula García-Rupérez, Jaime
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] Porous materials have become one of the best options for the development of optical sensors, since they maximize the interaction between the optical field and the target substances, which boosts the sensitivity. In ...[+]
Palabras clave: Chemical sensor , Fabry-Perot interferometer , Optical sensor , Polycarbonate , Track-etched membrane
Derechos de uso: Reconocimiento (by)
Fuente:
Beilstein Journal of Nanotechnology. (eissn: 2190-4286 )
DOI: 10.3762/bjnano.10.67
Editorial:
Beilstein-Institut
Versión del editor: https://doi.org/10.3762/bjnano.10.67
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-01-17/
info:eu-repo/grantAgreement/MINECO//TEC2015-63838-C3-1-R/ES/DETECCION DE TOXINAS Y AGENTES PATOGENOS MEDIANTE BIOSENSORES OPTICOS NANOMETRICOS PARA AMENAZAS NBQ/
Agradecimientos:
This research was funded by the Spanish Government through grant TEC2015-63838-C3-1-R-OPTONANOSENS and the Universitat Politecnica de Valencia through grants PAID-01-17.
Tipo: Artículo

References

Ruiz-Tórtola, Á., Prats-Quílez, F., González-Lucas, D., Bañuls, M.-J., Maquieira, Á., Wheeler, G., … García-Rupérez, J. (2018). Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes. Journal of Biophotonics, 11(10), e201800030. doi:10.1002/jbio.201800030

Caroselli, R., Martín Sánchez, D., Ponce Alcántara, S., Prats Quilez, F., Torrijos Morán, L., & García-Rupérez, J. (2017). Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor. Sensors, 17(12), 2813. doi:10.3390/s17122813

Prabowo, B., Purwidyantri, A., & Liu, K.-C. (2018). Surface Plasmon Resonance Optical Sensor: A Review on Light Source Technology. Biosensors, 8(3), 80. doi:10.3390/bios8030080 [+]
Ruiz-Tórtola, Á., Prats-Quílez, F., González-Lucas, D., Bañuls, M.-J., Maquieira, Á., Wheeler, G., … García-Rupérez, J. (2018). Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes. Journal of Biophotonics, 11(10), e201800030. doi:10.1002/jbio.201800030

Caroselli, R., Martín Sánchez, D., Ponce Alcántara, S., Prats Quilez, F., Torrijos Morán, L., & García-Rupérez, J. (2017). Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor. Sensors, 17(12), 2813. doi:10.3390/s17122813

Prabowo, B., Purwidyantri, A., & Liu, K.-C. (2018). Surface Plasmon Resonance Optical Sensor: A Review on Light Source Technology. Biosensors, 8(3), 80. doi:10.3390/bios8030080

Levitsky, I. (2015). Porous Silicon Structures as Optical Gas Sensors. Sensors, 15(8), 19968-19991. doi:10.3390/s150819968

Ponce-Alcántara, S., Martín-Sánchez, D., Pérez-Márquez, A., Maudes, J., Murillo, N., & García-Rupérez, J. (2018). Optical sensors based on polymeric nanofibers layers created by electrospinning. Optical Materials Express, 8(10), 3163. doi:10.1364/ome.8.003163

Qiu, H.-J., Li, X., Xu, H.-T., Zhang, H.-J., & Wang, Y. (2014). Nanoporous metal as a platform for electrochemical and optical sensing. J. Mater. Chem. C, 2(46), 9788-9799. doi:10.1039/c4tc01913j

Shindell, O., Mica, N., Ritzer, M., & Gordon, V. D. (2015). Specific adhesion of membranes simultaneously supports dual heterogeneities in lipids and proteins. Physical Chemistry Chemical Physics, 17(24), 15598-15607. doi:10.1039/c4cp05877a

Párraga-Niño, N., Quero, S., Ventós-Alfonso, A., Uria, N., Castillo-Fernandez, O., Ezenarro, J. J., … Sabrià, M. (2018). New system for the detection of Legionella pneumophila in water samples. Talanta, 189, 324-331. doi:10.1016/j.talanta.2018.07.013

Martín-Sánchez, D., Ponce-Alcántara, S., Martínez-Pérez, P., & García-Rupérez, J. (2019). Macropore Formation and Pore Morphology Characterization of Heavily Doped p-Type Porous Silicon. Journal of The Electrochemical Society, 166(2), B9-B12. doi:10.1149/2.0051902jes

Wilson, R. H., Nadeau, K. P., Jaworski, F. B., Tromberg, B. J., & Durkin, A. J. (2015). Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization. Journal of Biomedical Optics, 20(3), 030901. doi:10.1117/1.jbo.20.3.030901

Aran, K., Sasso, L. A., Kamdar, N., & Zahn, J. D. (2010). Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices. Lab on a Chip, 10(5), 548. doi:10.1039/b924816a

García-Rupérez, J., Toccafondo, V., Bañuls, M. J., Castelló, J. G., Griol, A., Peransi-Llopis, S., & Maquieira, Á. (2010). Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime. Optics Express, 18(23), 24276. doi:10.1364/oe.18.024276

Sani, E., & Dell’Oro, A. (2016). Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared. Optical Materials, 60, 137-141. doi:10.1016/j.optmat.2016.06.041

Ooi, C. H., Bormashenko, E., Nguyen, A. V., Evans, G. M., Dao, D. V., & Nguyen, N.-T. (2016). Evaporation of Ethanol–Water Binary Mixture Sessile Liquid Marbles. Langmuir, 32(24), 6097-6104. doi:10.1021/acs.langmuir.6b01272

Ogończyk, D., Jankowski, P., & Garstecki, P. (2012). Functionalization of polycarbonate with proteins; open-tubular enzymatic microreactors. Lab on a Chip, 12(15), 2743. doi:10.1039/c2lc40204a

Kosobrodova, E., Jones, R. T., Kondyurin, A., Chrzanowski, W., Pigram, P. J., McKenzie, D. R., & Bilek, M. M. M. (2015). Orientation and conformation of anti-CD34 antibody immobilised on untreated and plasma treated polycarbonate. Acta Biomaterialia, 19, 128-137. doi:10.1016/j.actbio.2015.02.027

Godeau, G., Amigoni, S., Darmanin, T., & Guittard, F. (2016). Post-functionalization of plasma treated polycarbonate substrates: An efficient way to hydrophobic, oleophobic plastics. Applied Surface Science, 387, 28-35. doi:10.1016/j.apsusc.2016.06.053

Sultanova, N. G., Kasarova, S. N., & Nikolov, I. D. (2012). Characterization of optical properties of optical polymers. Optical and Quantum Electronics, 45(3), 221-232. doi:10.1007/s11082-012-9616-6

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem