- -

Dehydrogenative coupling of silanes with alcohols catalyzed by Cu-3(BTC)(2)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dehydrogenative coupling of silanes with alcohols catalyzed by Cu-3(BTC)(2)

Mostrar el registro completo del ítem

Dhakshinamoorthy, A.; Concepción Heydorn, P.; García Gómez, H. (2016). Dehydrogenative coupling of silanes with alcohols catalyzed by Cu-3(BTC)(2). Chemical Communications. 52(13):2725-2728. https://doi.org/10.1039/c5cc10216b

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140212

Ficheros en el ítem

Metadatos del ítem

Título: Dehydrogenative coupling of silanes with alcohols catalyzed by Cu-3(BTC)(2)
Autor: Dhakshinamoorthy, Amarajothi Concepción Heydorn, Patricia García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Cu-3(BTC)(2) is an efficient and reusable heterogeneous catalyst for the dehydrogenative coupling of silanes with alcohols. Activity data and CO adsorption suggest that Cu(II) and in situ generated Cu(I) are the active ...[+]
Derechos de uso: Cerrado
Fuente:
Chemical Communications. (issn: 1359-7345 )
DOI: 10.1039/c5cc10216b
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c5cc10216b
Código del Proyecto:
info:eu-repo/grantAgreement/DST//SB%2FFT%2FCS-166%2F2013/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F014/
info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/
Agradecimientos:
ADM thanks the University Grants Commission, New Delhi, for the award of Assistant Professorship under its Faculty Recharge Programme. ADM also thanks the Department of Science and Technology, India, for the financial ...[+]
Tipo: Artículo

References

Belelli, P. ., Ferreira, M. ., & Damiani, D. . (2000). A theoretical and experimental study of the possible phenytriethoxysilane species found on treated silica. Journal of Molecular Catalysis A: Chemical, 159(2), 315-325. doi:10.1016/s1381-1169(00)00186-2

Díaz, I., & Pérez-Pariente, J. (2002). Synthesis of Spongelike Functionalized MCM-41 Materials from Gels Containing Amino Acids. Chemistry of Materials, 14(11), 4641-4646. doi:10.1021/cm020128a

Stratakis, M., & Garcia, H. (2012). Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes. Chemical Reviews, 112(8), 4469-4506. doi:10.1021/cr3000785 [+]
Belelli, P. ., Ferreira, M. ., & Damiani, D. . (2000). A theoretical and experimental study of the possible phenytriethoxysilane species found on treated silica. Journal of Molecular Catalysis A: Chemical, 159(2), 315-325. doi:10.1016/s1381-1169(00)00186-2

Díaz, I., & Pérez-Pariente, J. (2002). Synthesis of Spongelike Functionalized MCM-41 Materials from Gels Containing Amino Acids. Chemistry of Materials, 14(11), 4641-4646. doi:10.1021/cm020128a

Stratakis, M., & Garcia, H. (2012). Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes. Chemical Reviews, 112(8), 4469-4506. doi:10.1021/cr3000785

Primo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., Álvaro, M., Candu, N., … García, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1). doi:10.1038/ncomms9561

Chui, S. S. (1999). A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science, 283(5405), 1148-1150. doi:10.1126/science.283.5405.1148

Tranchemontagne, D. J., Mendoza-Cortés, J. L., O’Keeffe, M., & Yaghi, O. M. (2009). Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chemical Society Reviews, 38(5), 1257. doi:10.1039/b817735j

Natarajan, S., & Mahata, P. (2009). Metal–organic framework structures – how closely are they related to classical inorganic structures? Chemical Society Reviews, 38(8), 2304. doi:10.1039/b815106g

Dhakshinamoorthy, A., & Garcia, H. (2014). Metal–organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chem. Soc. Rev., 43(16), 5750-5765. doi:10.1039/c3cs60442j

Dhakshinamoorthy, A., Alvaro, M., Concepcion, P., & Garcia, H. (2011). Chemical instability of Cu3(BTC)2 by reaction with thiols. Catalysis Communications, 12(11), 1018-1021. doi:10.1016/j.catcom.2011.03.018

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2015). Deactivation of Cu3(BTC)2 in the Synthesis of 2-Phenylquinoxaline. Catalysis Letters, 145(8), 1600-1605. doi:10.1007/s10562-015-1497-4

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metal−Organic Frameworks Assisted by TEMPO. ACS Catalysis, 1(1), 48-53. doi:10.1021/cs1000703

Schlichte, K., Kratzke, T., & Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1-2), 81-88. doi:10.1016/j.micromeso.2003.12.027

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening of Epoxides. Chemistry - A European Journal, 16(28), 8530-8536. doi:10.1002/chem.201000588

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2009). Metal organic frameworks as efficient heterogeneous catalysts for the oxidation of benzylic compounds with t-butylhydroperoxide. Journal of Catalysis, 267(1), 1-4. doi:10.1016/j.jcat.2009.08.001

Opanasenko, M., Dhakshinamoorthy, A., Shamzhy, M., Nachtigall, P., Horáček, M., Garcia, H., & Čejka, J. (2013). Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catal. Sci. Technol., 3(2), 500-507. doi:10.1039/c2cy20586f

Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2015). Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chemical Society Reviews, 44(7), 1922-1947. doi:10.1039/c4cs00254g

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science & Technology, 1(6), 856. doi:10.1039/c1cy00068c

Rendler, S., Plefka, O., Karatas, B., Auer, G., Fröhlich, R., Mück-Lichtenfeld, C., … Oestreich, M. (2008). Stereoselective Alcohol Silylation by Dehydrogenative Si-O Coupling: Scope, Limitations, and Mechanism of the Cu-H-Catalyzed Non-Enzymatic Kinetic Resolution with Silicon-Stereogenic Silanes. Chemistry - A European Journal, 14(36), 11512-11528. doi:10.1002/chem.200801377

Fukumoto, K., Kasa, M., & Nakazawa, H. (2015). Dehydrogenative coupling of alcohol with hydrosilane catalyzed by an iron complex. Inorganica Chimica Acta, 431, 219-221. doi:10.1016/j.ica.2015.02.019

Li, Y., & Yang, R. T. (2007). Gas Adsorption and Storage in Metal−Organic Framework MOF-177. Langmuir, 23(26), 12937-12944. doi:10.1021/la702466d

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem