Keshavarz, T., & Roy, I. (2010). Polyhydroxyalkanoates: bioplastics with a green agenda. Current Opinion in Microbiology, 13(3), 321-326. doi:10.1016/j.mib.2010.02.006
Aldas, M., Paladines, A., Valle, V., Pazmiño, M., & Quiroz, F. (2018). Effect of the Prodegradant-Additive Plastics Incorporated on the Polyethylene Recycling. International Journal of Polymer Science, 2018, 1-10. doi:10.1155/2018/2474176
Arrieta, M. P., Peponi, L., López, D., & Fernández-García, M. (2018). Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Industrial Crops and Products, 111, 317-328. doi:10.1016/j.indcrop.2017.10.042
[+]
Keshavarz, T., & Roy, I. (2010). Polyhydroxyalkanoates: bioplastics with a green agenda. Current Opinion in Microbiology, 13(3), 321-326. doi:10.1016/j.mib.2010.02.006
Aldas, M., Paladines, A., Valle, V., Pazmiño, M., & Quiroz, F. (2018). Effect of the Prodegradant-Additive Plastics Incorporated on the Polyethylene Recycling. International Journal of Polymer Science, 2018, 1-10. doi:10.1155/2018/2474176
Arrieta, M. P., Peponi, L., López, D., & Fernández-García, M. (2018). Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Industrial Crops and Products, 111, 317-328. doi:10.1016/j.indcrop.2017.10.042
Akrami, M., Ghasemi, I., Azizi, H., Karrabi, M., & Seyedabadi, M. (2016). A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydrate Polymers, 144, 254-262. doi:10.1016/j.carbpol.2016.02.035
Elfehri Borchani, K., Carrot, C., & Jaziri, M. (2015). Biocomposites of Alfa fibers dispersed in the Mater-Bi® type bioplastic: Morphology, mechanical and thermal properties. Composites Part A: Applied Science and Manufacturing, 78, 371-379. doi:10.1016/j.compositesa.2015.08.023
Sessini, V., Arrieta, M. P., Fernández-Torres, A., & Peponi, L. (2018). Humidity-activated shape memory effect on plasticized starch-based biomaterials. Carbohydrate Polymers, 179, 93-99. doi:10.1016/j.carbpol.2017.09.070
Arrieta, M., Samper, M., Aldas, M., & López, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 10(9), 1008. doi:10.3390/ma10091008
Aldas, M., Ferri, J. M., Lopez‐Martinez, J., Samper, M. D., & Arrieta, M. P. (2019). Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater‐Bi type bioplastic. Journal of Applied Polymer Science, 137(4), 48236. doi:10.1002/app.48236
Sessini, V., Navarro-Baena, I., Arrieta, M. P., Dominici, F., López, D., Torre, L., … Peponi, L. (2018). Effect of the addition of polyester-grafted-cellulose nanocrystals on the shape memory properties of biodegradable PLA/PCL nanocomposites. Polymer Degradation and Stability, 152, 126-138. doi:10.1016/j.polymdegradstab.2018.04.012
Sessini, V., Arrieta, M. P., Raquez, J.-M., Dubois, P., Kenny, J. M., & Peponi, L. (2019). Thermal and composting degradation of EVA/Thermoplastic starch blends and their nanocomposites. Polymer Degradation and Stability, 159, 184-198. doi:10.1016/j.polymdegradstab.2018.11.025
Kaseem, M., Hamad, K., & Deri, F. (2012). Thermoplastic starch blends: A review of recent works. Polymer Science Series A, 54(2), 165-176. doi:10.1134/s0965545x1202006x
Olivato, J. B., Nobrega, M. M., Müller, C. M. O., Shirai, M. A., Yamashita, F., & Grossmann, M. V. E. (2013). Mixture design applied for the study of the tartaric acid effect on starch/polyester films. Carbohydrate Polymers, 92(2), 1705-1710. doi:10.1016/j.carbpol.2012.11.024
Yoshida, Y., & Uemura, T. (1994). Properties and Applications of «Mater-Bi». Biodegradable Plastics and Polymers, 443-450. doi:10.1016/b978-0-444-81708-2.50049-x
Nainggolan, H., Gea, S., Bilotti, E., Peijs, T., & Hutagalung, S. D. (2013). Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi® bionanocomposite. Beilstein Journal of Nanotechnology, 4, 325-329. doi:10.3762/bjnano.4.37
Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082
Morreale, M., Scaffaro, R., Maio, A., & La Mantia, F. P. (2008). Effect of adding wood flour to the physical properties of a biodegradable polymer. Composites Part A: Applied Science and Manufacturing, 39(3), 503-513. doi:10.1016/j.compositesa.2007.12.002
Nayak, S. K. (2010). Biodegradable PBAT/Starch Nanocomposites. Polymer-Plastics Technology and Engineering, 49(14), 1406-1418. doi:10.1080/03602559.2010.496397
González Seligra, P., Eloy Moura, L., Famá, L., Druzian, J. I., & Goyanes, S. (2016). Influence of incorporation of starch nanoparticles in PBAT/TPS composite films. Polymer International, 65(8), 938-945. doi:10.1002/pi.5127
Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M., & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 99, 196-204. doi:10.1016/j.indcrop.2017.02.009
Gutierrez, J., & Tercjak, A. (2014). Natural gum rosin thin films nanopatterned by poly(styrene)-block-poly(4-vinylpiridine) block copolymer. RSC Advances, 4(60), 32024. doi:10.1039/c4ra04296d
Wilbon, P. A., Chu, F., & Tang, C. (2012). Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromolecular Rapid Communications, 34(1), 8-37. doi:10.1002/marc.201200513
Rodríguez-García, A., Martín, J. A., López, R., Mutke, S., Pinillos, F., & Gil, L. (2015). Influence of climate variables on resin yield and secretory structures in tapped Pinus pinaster Ait. in central Spain. Agricultural and Forest Meteorology, 202, 83-93. doi:10.1016/j.agrformet.2014.11.023
Davis, G., & Song, J. H. (2006). Biodegradable packaging based on raw materials from crops and their impact on waste management. Industrial Crops and Products, 23(2), 147-161. doi:10.1016/j.indcrop.2005.05.004
Yadav, B. K., Gidwani, B., & Vyas, A. (2015). Rosin: Recent advances and potential applications in novel drug delivery system. Journal of Bioactive and Compatible Polymers, 31(2), 111-126. doi:10.1177/0883911515601867
Butt, H.-J., Cappella, B., & Kappl, M. (2005). Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 59(1-6), 1-152. doi:10.1016/j.surfrep.2005.08.003
J. Roa, J., Rayon, E., Morales, M., & Segarra, M. (2012). Contact Mechanics at Nanometric Scale Using Nanoindentation Technique for Brittle and Ductile Materials. Recent Patents on Engineering, 6(2), 116-126. doi:10.2174/187221212801227130
Hernández‐Fernández, J., Rayón, E., López, J., & Arrieta, M. P. (2019). Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromolecular Materials and Engineering, 304(11), 1900379. doi:10.1002/mame.201900379
Taguet, A., Huneault, M. A., & Favis, B. D. (2009). Interface/morphology relationships in polymer blends with thermoplastic starch. Polymer, 50(24), 5733-5743. doi:10.1016/j.polymer.2009.09.055
Zhang, S., He, Y., Lin, Z., Li, J., & Jiang, G. (2019). Effects of tartaric acid contents on phase homogeneity, morphology and properties of poly (butyleneadipate-co-terephthalate)/thermoplastic starch bio-composities. Polymer Testing, 76, 385-395. doi:10.1016/j.polymertesting.2019.04.005
Mohammadi Nafchi, A., Moradpour, M., Saeidi, M., & Alias, A. K. (2013). Thermoplastic starches: Properties, challenges, and prospects. Starch - Stärke, 65(1-2), 61-72. doi:10.1002/star.201200201
Van Soest, J. J. G., De Wit, D., & Vliegenthart, J. F. G. (1996). Mechanical properties of thermoplastic waxy maize starch. Journal of Applied Polymer Science, 61(11), 1927-1937. doi:10.1002/(sici)1097-4628(19960912)61:11<1927::aid-app7>3.0.co;2-l
Zhang, Y., Rempel, C., & Liu, Q. (2014). Thermoplastic Starch Processing and Characteristics—A Review. Critical Reviews in Food Science and Nutrition, 54(10), 1353-1370. doi:10.1080/10408398.2011.636156
Yu, J., Gao, J., & Lin, T. (1996). Biodegradable thermoplastic starch. Journal of Applied Polymer Science, 62(9), 1491-1494. doi:10.1002/(sici)1097-4628(19961128)62:9<1491::aid-app19>3.0.co;2-1
Zullo, R., & Iannace, S. (2009). The effects of different starch sources and plasticizers on film blowing of thermoplastic starch: Correlation among process, elongational properties and macromolecular structure. Carbohydrate Polymers, 77(2), 376-383. doi:10.1016/j.carbpol.2009.01.007
Sousa, F. M., Costa, A. R. M., Reul, L. T. A., Cavalcanti, F. B., Carvalho, L. H., Almeida, T. G., & Canedo, E. L. (2018). Rheological and thermal characterization of PCL/PBAT blends. Polymer Bulletin, 76(3), 1573-1593. doi:10.1007/s00289-018-2428-5
Mittal, V., Akhtar, T., Luckachan, G., & Matsko, N. (2014). PLA, TPS and PCL binary and ternary blends: structural characterization and time-dependent morphological changes. Colloid and Polymer Science, 293(2), 573-585. doi:10.1007/s00396-014-3458-7
Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. doi:10.1016/j.eurpolymj.2013.11.009
Burgos, N., Martino, V. P., & Jiménez, A. (2013). Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651-658. doi:10.1016/j.polymdegradstab.2012.11.009
Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2015). Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polymer Letters, 9(7), 583-596. doi:10.3144/expresspolymlett.2015.55
Arrieta, M. P., Peltzer, M. A., López, J., Garrigós, M. del C., Valente, A. J. M., & Jiménez, A. (2014). Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. Journal of Food Engineering, 121, 94-101. doi:10.1016/j.jfoodeng.2013.08.015
Hambleton, A., Fabra, M.-J., Debeaufort, F., Dury-Brun, C., & Voilley, A. (2009). Interface and aroma barrier properties of iota-carrageenan emulsion–based films used for encapsulation of active food compounds. Journal of Food Engineering, 93(1), 80-88. doi:10.1016/j.jfoodeng.2009.01.001
[-]