- -

Combined Transcranial Direct Current Stimulation and Virtual Reality-Based Paradigm for Upper Limb Rehabilitation in Individuals with Restricted Movements. A Feasibility Study with a Chronic Stroke Survivor with Severe Hemiparesis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Combined Transcranial Direct Current Stimulation and Virtual Reality-Based Paradigm for Upper Limb Rehabilitation in Individuals with Restricted Movements. A Feasibility Study with a Chronic Stroke Survivor with Severe Hemiparesis

Mostrar el registro completo del ítem

Fuentes Calderón, MA.; Borrego, A.; Latorre Grau, J.; Colomer Font, C.; Alcañiz Raya, ML.; Sánchez-Ledesma, MJ.; Noé-Sebastián, E.... (2018). Combined Transcranial Direct Current Stimulation and Virtual Reality-Based Paradigm for Upper Limb Rehabilitation in Individuals with Restricted Movements. A Feasibility Study with a Chronic Stroke Survivor with Severe Hemiparesis. Journal of Medical Systems. 42(5):1-9. https://doi.org/10.1007/s10916-018-0949-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140845

Ficheros en el ítem

Metadatos del ítem

Título: Combined Transcranial Direct Current Stimulation and Virtual Reality-Based Paradigm for Upper Limb Rehabilitation in Individuals with Restricted Movements. A Feasibility Study with a Chronic Stroke Survivor with Severe Hemiparesis
Autor: Fuentes Calderón, María Antonia Borrego, Adrián Latorre Grau, Jorge Colomer Font, Carolina Alcañiz Raya, Mariano Luis Sánchez-Ledesma, María José Noé-Sebastián, Enrique Llorens Rodríguez, Roberto
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica
Fecha difusión:
Resumen:
[EN] Impairments of the upper limb function are a major cause of disability and rehabilitation. Most of the available therapeutic options are based on active exercises and on motor and attentional inclusion of the affected ...[+]
Palabras clave: Virtual reality , TDCS , Eye-tracking , Surface electromyography , Upper limb paresis , Monoparesis, stroke
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Medical Systems. (issn: 0148-5598 )
DOI: 10.1007/s10916-018-0949-y
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10916-018-0949-y
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-10-14/
info:eu-repo/grantAgreement/UPV//PAID-10-16/
info:eu-repo/grantAgreement/MINECO//BES-2014-068218/ES/BES-2014-068218/
info:eu-repo/grantAgreement/MINECO//TIN2014-61975-EXP/ES/REHABILITACION DE ESTADOS ALTERADOS DE CONCIENCIA EN FASE TEMPRANA/
Agradecimientos:
This study was funded in part by Ministerio de Economia y Competitividad of Spain (Project TIN2014-61975-EXP and Grant BES-2014-068218) and by Universitat Politecnica de Valencia (Grant PAID-10-14 and Grant PAID-10-16).
Tipo: Artículo

References

Invernizzi, M., Negrini, S., Da, S. C., Lanzotti, L., Cisari, C., and Baricich, A., The value of adding mirror therapy for upper limb motor recovery of subacute stroke patients: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 49:311–317, 2013.

Park, Y., Chang, M., Kim, K.-M., and An, D.-H., The effects of mirror therapy with tasks on upper extremity function and self-care in stroke patients. J. Phys. Ther. Sci. 27:1499–1501, 2015. https://doi.org/10.1589/jpts.27.1499 .

Pollock, A., Farmer, S. E., Brady, M. C., Langhorne, P., Mead, G. E., Mehrholz, J., and van Wijck, F., Interventions for improving upper limb function after stroke. Cochrane Database Syst. Rev. 11, 2014. https://doi.org/10.1002/14651858.CD010820.pub2 . [+]
Invernizzi, M., Negrini, S., Da, S. C., Lanzotti, L., Cisari, C., and Baricich, A., The value of adding mirror therapy for upper limb motor recovery of subacute stroke patients: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 49:311–317, 2013.

Park, Y., Chang, M., Kim, K.-M., and An, D.-H., The effects of mirror therapy with tasks on upper extremity function and self-care in stroke patients. J. Phys. Ther. Sci. 27:1499–1501, 2015. https://doi.org/10.1589/jpts.27.1499 .

Pollock, A., Farmer, S. E., Brady, M. C., Langhorne, P., Mead, G. E., Mehrholz, J., and van Wijck, F., Interventions for improving upper limb function after stroke. Cochrane Database Syst. Rev. 11, 2014. https://doi.org/10.1002/14651858.CD010820.pub2 .

Barker, R. N., Gill, T. J., and Brauer, S. G., Factors contributing to upper limb recovery after stroke: A survey of stroke survivors in Queensland Australia. Disabil. Rehabil. 29:981–989, 2007. https://doi.org/10.1080/09638280500243570 .

Bayona, N. A., Bitensky, J., Salter, K., and Teasell, R., The role of task-specific training in rehabilitation therapies. Top. Stroke Rehabil. 12:58–65, 2005. https://doi.org/10.1310/BQM5-6YGB-MVJ5-WVCR .

Coupar, F., Pollock, A., Rowe, P., Weir, C., and Langhorne, P., Predictors of upper limb recovery after stroke: a systematic review and meta-analysis. Clin. Rehabil. 26:291–313, 2012. https://doi.org/10.1177/0269215511420305 .

Hunter, S. M., Crome, P., Sim, J., and Pomeroy, V. M., Effects of Mobilization and Tactile Stimulation on Recovery of the Hemiplegic Upper Limb: A Series of Replicated Single-System Studies. Arch. Phys. Med. Rehabil. 89:2003–2010, 2008. https://doi.org/10.1016/j.apmr.2008.03.016 .

Colomer, C., Noé, E., and Llorens, R., Mirror therapy in chronic stroke survivors with severely impaired upper limb function: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 52:271–278, 2016.

Lum, P. S., Mulroy, S., Amdur, R. L., Requejo, P., Prilutsky, B. I., and Dromerick, A. W., Gains in upper extremity function after stroke via recovery or compensation: Potential differential effects on amount of real-world limb use. Top. Stroke Rehabil. 16:237–253, 2009. https://doi.org/10.1310/tsr1604-237 .

Taub, E., Uswatte, G., Mark, V. W., and Morris, D. M. M., The learned nonuse phenomenon: implications for rehabilitation. Eura. Medicophys. 42:241–256, 2006.

Deconinck, F. J. A., Smorenburg, A. R. P., Benham, A., Ledebt, A., Feltham, M. G., and Savelsbergh, G. J. P., Reflections on Mirror Therapy: A Systematic Review of the Effect of Mirror Visual Feedback on the Brain. Neurorehabil. Neural Repair. 29:349–361, 2014. https://doi.org/10.1177/1545968314546134 .

Lindberg, P. G., Schmitz, C., Engardt, M., Forssberg, H., and Borg, J., Use-dependent up- and down-regulation of sensorimotor brain circuits in stroke patients. Neurorehabil. Neural Repair. 21:315–326, 2007. https://doi.org/10.1177/1545968306296965 .

Thieme, H., Bayn, M., Wurg, M., Zange, C., Pohl, M., and Behrens, J., Mirror therapy for patients with severe arm paresis after stroke--a randomized controlled trial. Clin. Rehabil. 27:314–324, 2013. https://doi.org/10.1177/0269215512455651 .

Dettmers, C., Benz, M., Liepert, J., and Rockstroh, B., Motor imagery in stroke patients, or plegic patients with spinal cord or peripheral diseases. Acta Neurol. Scand. 126:238–247, 2012. https://doi.org/10.1111/j.1600-0404.2012.01680.x .

Kimberley, T. J., Khandekar, G., Skraba, L. L., Spencer, J. A., Van Gorp, E. A., and Walker, S. R., Neural substrates for motor imagery in severe hemiparesis. Neurorehabil. Neural Repair. 20:268–277, 2006. https://doi.org/10.1177/1545968306286958 .

Pascual-Leone, A., The neuronal correlates of mirror therapy: an fMRI study on mirror induced visual illusions in patients with stroke. J. Neurol. Neurosurg. Psychiatry. 82:393–398, 2011. https://doi.org/10.1136/jnnp.2009.194134 .

Gatti, R., Rocca, M. A., Fumagalli, S., Cattrysse, E., Kerckhofs, E., Falini, A., and Filippi, M., The effect of action observation/execution on mirror neuron system recruitment: an fMRI study in healthy individuals. Brain Imaging Behav. 11:565–576, 2017. https://doi.org/10.1007/s11682-016-9536-3 .

Bonato, C., Miniussi, C., and Rossini, P. M., Transcranial magnetic stimulation and cortical evoked potentials: A TMS/EEG co-registration study. Clin. Neurophysiol. 117:1699–1707, 2006. https://doi.org/10.1016/j.clinph.2006.05.006 .

Grundmann, L., Rolke, R., Nitsche, M. A., Pavlakovic, G., Happe, S., Treede, R. D., Paulus, W., and Bachmann, C. G., Effects of transcranial direct current stimulation of the primary sensory cortex on somatosensory perception. Brain Stimul. 4:253–260, 2011. https://doi.org/10.1016/j.brs.2010.12.002 .

von Rein, E., Hoff, M., Kaminski, E., Sehm, B., Steele, C. J., Villringer, A., and Ragert, P., Improving motor performance without training: the effect of combining mirror visual feedback with transcranial direct current stimulation. J. Neurophysiol. 113:2383–2389, 2015. https://doi.org/10.1152/jn.00832.2014 .

Kim, Y. J., Ku, J., Cho, S., Kim, H. J., Cho, Y. K., Lim, T., and Kang, Y. J., Facilitation of corticospinal excitability by virtual reality exercise following anodal transcranial direct current stimulation in healthy volunteers and subacute stroke subjects. J. Neuroeng. Rehabil. 11:124, 2014. https://doi.org/10.1186/1743-0003-11-124 .

S. Bermúdez i Badia, G.G. Fluet, R. Llorens, J.E. Deutsch, Virtual Reality for Sensorimotor Rehabilitation Post Stroke: Design Principles and Evidence. In: Neurorehabilitation Technol., Second edi, Springer, 2016: pp. 573–603. https://doi.org/10.1007/978-3-319-28603-7_28 .

Im, H., Ku, J., Kim, H. J., and Kang, Y. J., Virtual reality-guided motor imagery increases corticomotor excitability in healthy volunteers and stroke patients. Ann. Rehabil. Med. 40:420–431, 2016. https://doi.org/10.5535/arm.2016.40.3.420 .

Colomer, C., Llorens, R., Noé, E., and Alcañiz, M., Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. J. Neuroeng. Rehabil. 13, 2016. https://doi.org/10.1186/s12984-016-0153-6 .

Grimm, F., Naros, G., and Gharabaghi, A., Closed-Loop Task Difficulty Adaptation during Virtual Reality Reach-to-Grasp Training Assisted with an Exoskeleton for Stroke Rehabilitation. Front. Neurosci. 10:518, 2016. https://doi.org/10.3389/fnins.2016.00518 .

Poole, A., and Ball, L. J., Eye Tracking in Human-Computer Interaction and Usability Research: Current Status and Future Prospects. Encycl. Human-Computer Interact.:211–219, 2005. https://doi.org/10.4018/978-1-59140-562-7 .

R. Merletti, A. Botter, A. Troiano, E. Merlo, M.A. Minetto, Technology and instrumentation for detection and conditioning of the surface electromyographic signal: State of the art, Clin. Biomech. 24 (2009) 122–134. https://doi.org/10.1016/j.clinbiomech.2008.08.006 .

Trojano, L., Moretta, P., Loreto, V., Cozzolino, A., Santoro, L., and Estraneo, A., Quantitative assessment of visual behavior in disorders of consciousness. J. Neurol. 259:1888–1895, 2012. https://doi.org/10.1007/s00415-012-6435-4 .

Trojano, L., Moretta, P., Loreto, V., Santoro, L., and Estraneo, A., Affective saliency modifies visual tracking behavior in disorders of consciousness: A quantitative analysis. J. Neurol. 260:306–308, 2013. https://doi.org/10.1007/s00415-012-6717-x .

Sanford, J., Moreland, J., Swanson, L. R., Stratford, P. W., and Gowland, C., Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys. Ther. 73:447–454, 1993. https://doi.org/10.1177/1545968304269210 .

Lang, C. E., Edwards, D. F., Birkenmeier, R. L., and Dromerick, A. W., Estimating Minimal Clinically Important Differences of Upper-Extremity Measures Early After Stroke. Arch. Phys. Med. Rehabil. 89:1693–1700, 2008. https://doi.org/10.1016/j.apmr.2008.02.022 .

Brooke, J., SUS - A quick and dirty usability scale. Usability Eval. Ind. 189:4–7, 1996. https://doi.org/10.1002/hbm.20701 .

McAuley, E., Duncan, T., and Tammen, V. V., Psychometric Properties of the Intrinsic Motivation Inventory in a Competitive Sport Setting: A Confirmatory Factor Analysis. Res. Q. Exerc. Sport. 60:48–58, 1989. https://doi.org/10.1080/02701367.1989.10607413 .

Page, S. J., Fulk, G. D., and Boyne, P., Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys. Ther. 92:791–798, 2012. https://doi.org/10.2522/ptj.20110009 .

R. Teasell, Evidence-Based Review of Stroke Rehabilitation - Background Concepts in Stroke Rehabilitation, 2016. http://www.ebrsr.com/evidence-review/3-background-concepts-stroke-rehabilitation .

Cameirão, M. S., Badia, S. B. I., Duarte, E., Frisoli, A., and Verschure, P. F. M. J., The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke. 43:2720–2728, 2012. https://doi.org/10.1161/STROKEAHA.112.653196 .

K.E. Laver, S. George, S. Thomas, J.E. Deutsch, M. Crotty, Virtual reality for stroke rehabilitation. In: Cochrane Database Syst. Rev., 2015: pp. 1–107. https://doi.org/10.1002/14651858.CD008349.pub3 .

Lefebvre, S., Laloux, P., Peeters, A., Desfontaines, P., Jamart, J., and Vandermeeren, Y., Dual-tDCS Enhances Online Motor Skill Learning and Long-Term Retention in Chronic Stroke Patients. Front. Hum. Neurosci. 6:343, 2012. https://doi.org/10.3389/fnhum.2012.00343 .

Lindenberg, R., Renga, V., Zhu, L. L., Nair, D., and Schlaug, G., Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology. 75:2176–2184, 2010. https://doi.org/10.1212/WNL.0b013e318202013a .

K. Figlewski, J.U. Blicher, J. Mortensen, K.E. Severinsen, J.F. Nielsen, H. Andersen, Transcranial Direct Current Stimulation Potentiates Improvements in Functional Ability in Patients With Chronic Stroke Receiving Constraint-Induced Movement Therapy, Stroke. (2016). http://stroke.ahajournals.org/content/early/2016/11/29/STROKEAHA.116.014988.abstract .

Lee, S. J., and Chun, M. H., Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Arch. Phys. Med. Rehabil. 95:431–438, 2014. https://doi.org/10.1016/j.apmr.2013.10.027 .

Viana, R. T., Laurentino, G. E. C., Souza, R. J. P., Fonseca, J. B., Silva Filho, E. M., Dias, S. N., Teixeira-Salmela, L. F., and Monte-Silva, K. K., Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: A pilot randomized controlled trial. NeuroRehabilitation. 34:437–446, 2014. https://doi.org/10.3233/NRE-141065 .

Sigrist, R., Rauter, G., Riener, R., and Wolf, P., Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychon. Bull. Rev. 20:21–53, 2013. https://doi.org/10.3758/s13423-012-0333-8 .

Bowering, K. J., O’Connell, N. E., Tabor, A., Catley, M. J., Leake, H. B., Moseley, G. L., and Stanton, T. R., The Effects of Graded Motor Imagery and Its Components on Chronic Pain: A Systematic Review and Meta-Analysis. J. Pain. 14:3–13, 2013. https://doi.org/10.1016/j.jpain.2012.09.007 .

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem