- -

Fibrinogen organization at the cell-material interface directs endothelial cell behavior

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Fibrinogen organization at the cell-material interface directs endothelial cell behavior

Show full item record

Gugutkov, D.; González García, C.; Altankov, G.; Salmerón Sánchez, M. (2011). Fibrinogen organization at the cell-material interface directs endothelial cell behavior. Journal of Bioactive and Compatible Polymers. 26(4):375-387. https://doi.org/10.1177/0883911511409020

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140890

Files in this item

Item Metadata

Title: Fibrinogen organization at the cell-material interface directs endothelial cell behavior
Author: Gugutkov, Dencho González García, Cristina Altankov, George Salmerón Sánchez, Manuel
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
[EN] Fibrinogen (FG) adsorption on surfaces with controlled fraction of -OH groups was investigated with AFM and correlated to the initial interaction of primary endothelial cells (HUVEC). The -OH content was tailored ...[+]
Subjects: Cell-material interactions , Cell-material interface , Electrospun fibers , Endothelial cell behavior , Ethyl acrylate , Fibrinogen , Fibrinogen organization , HUVEC , Hydroxyl ethyl acrylate , Cell-material interaction , Ethyl acrylates , Adhesion , Adsorption , Electrospinning , Fibers , Hydrophobicity , Interfaces (materials) , Pressure effects , Proteins , Scaffolds (biology) , Surface chemistry , Surfaces , Tissue , Endothelial cells , Acrylic acid 2 hydroxyethyl ester , Acrylic acid derivative , Acrylic acid ethyl ester , Biomaterial , Unclassified drug , Actin filament , Article , Atomic force microscopy , Cell adhesion , Controlled study , Endothelium cell , Human , Human cell , Protein analysis
Copyrigths: Cerrado
Source:
Journal of Bioactive and Compatible Polymers. (issn: 0883-9115 )
DOI: 10.1177/0883911511409020
Publisher:
SAGE Publications
Publisher version: https://doi.org/10.1177/0883911511409020
Project ID:
info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-02/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/
info:eu-repo/grantAgreement/MICINN//PIM2010EEU-00111/ES/GEL DE NANOFIBRAS BIOINSPIRADO PARA LA REGENERACION DE HUESO Y CARTILAGO/
MINISTERIO DE EDUCACION /MAT2009-14440-C02-01
Thanks:
AFM was performed under the technical guidance of the Microscopy Service at the Universidad Politecnica de Valencia, whose advice is greatly appreciated. The work was supported by the Spanish Ministry of Science and ...[+]
Type: Artículo

References

Weisel, J. W. (2005). Fibrinogen and Fibrin. Advances in Protein Chemistry, 247-299. doi:10.1016/s0065-3233(05)70008-5

Cacciafesta, P., Humphris, A. D. L., Jandt, K. D., & Miles, M. J. (2000). Human Plasma Fibrinogen Adsorption on Ultraflat Titanium Oxide Surfaces Studied with Atomic Force Microscopy. Langmuir, 16(21), 8167-8175. doi:10.1021/la000362k

Tzoneva, R., Groth, T., Altankov, G., & Paul, D. (2002). Journal of Materials Science: Materials in Medicine, 13(12), 1235-1244. doi:10.1023/a:1021131113711 [+]
Weisel, J. W. (2005). Fibrinogen and Fibrin. Advances in Protein Chemistry, 247-299. doi:10.1016/s0065-3233(05)70008-5

Cacciafesta, P., Humphris, A. D. L., Jandt, K. D., & Miles, M. J. (2000). Human Plasma Fibrinogen Adsorption on Ultraflat Titanium Oxide Surfaces Studied with Atomic Force Microscopy. Langmuir, 16(21), 8167-8175. doi:10.1021/la000362k

Tzoneva, R., Groth, T., Altankov, G., & Paul, D. (2002). Journal of Materials Science: Materials in Medicine, 13(12), 1235-1244. doi:10.1023/a:1021131113711

Tunc, S., Maitz, M. F., Steiner, G., Vázquez, L., Pham, M. T., & Salzer, R. (2005). In situ conformational analysis of fibrinogen adsorbed on Si surfaces. Colloids and Surfaces B: Biointerfaces, 42(3-4), 219-225. doi:10.1016/j.colsurfb.2005.03.004

Gettens, R. T. T., Bai, Z., & Gilbert, J. L. (2005). Quantification of the kinetics and thermodynamics of protein adsorption using atomic force microscopy. Journal of Biomedical Materials Research Part A, 72A(3), 246-257. doi:10.1002/jbm.a.30218

Ta, T. C., & McDermott, M. T. (2000). Mapping Interfacial Chemistry Induced Variations in Protein Adsorption with Scanning Force Microscopy. Analytical Chemistry, 72(11), 2627-2634. doi:10.1021/ac991137e

Ishizaki, T., Saito, N., Sato, Y., & Takai, O. (2007). Probing into adsorption behavior of human plasma fibrinogen on self-assembled monolayers with different chemical properties by scanning probe microscopy. Surface Science, 601(18), 3861-3865. doi:10.1016/j.susc.2007.04.096

Brash JL and Horbett TA In protein at interfaces II: fundamentals and applications. In: Brash JL and Horbett TA. (eds). ACS Symposium Series No. 602. Washington, DC: American Chemical Society, 1995Chapter 1.

Gettens, R. T. T., & Gilbert, J. L. (2007). Quantification of fibrinogen adsorption onto 316L stainless steel. Journal of Biomedical Materials Research Part A, 81A(2), 465-473. doi:10.1002/jbm.a.30995

Ortega-Vinuesa, J. L., Tengvall, P., & Lundström, I. (1998). Aggregation of HSA, IgG, and Fibrinogen on Methylated Silicon Surfaces. Journal of Colloid and Interface Science, 207(2), 228-239. doi:10.1006/jcis.1998.5624

Mitsakakis, K., Lousinian, S., & Logothetidis, S. (2007). Early stages of human plasma proteins adsorption probed by Atomic Force Microscope. Biomolecular Engineering, 24(1), 119-124. doi:10.1016/j.bioeng.2006.05.013

Sit, P. S., & Marchant, R. (1999). Surface-dependent Conformations of Human Fibrinogen Observed by Atomic Force Microscopy under Aqueous Conditions. Thrombosis and Haemostasis, 82(09), 1053-1060. doi:10.1055/s-0037-1614328

Marchin, K. L., & Berrie, C. L. (2003). Conformational Changes in the Plasma Protein Fibrinogen upon Adsorption to Graphite and Mica Investigated by Atomic Force Microscopy. Langmuir, 19(23), 9883-9888. doi:10.1021/la035127r

Wertz, C. F., & Santore, M. M. (2001). Effect of Surface Hydrophobicity on Adsorption and Relaxation Kinetics of Albumin and Fibrinogen:  Single-Species and Competitive Behavior. Langmuir, 17(10), 3006-3016. doi:10.1021/la0017781

Wertz, C. F., & Santore, M. M. (2002). Fibrinogen Adsorption on Hydrophilic and Hydrophobic Surfaces:  Geometrical and Energetic Aspects of Interfacial Relaxations. Langmuir, 18(3), 706-715. doi:10.1021/la011075z

Rodríguez Hernández, J. C., Rico, P., Moratal, D., Monleón Pradas, M., & Salmerón-Sánchez, M. (2009). Fibrinogen Patterns and Activity on Substrates with Tailored Hydroxy Density. Macromolecular Bioscience, 9(8), 766-775. doi:10.1002/mabi.200800332

Slack, S. M., & Horbett, T. A. (1992). Changes in fibrinogen adsorbed to segmented polyurethanes and hydroxyethylmethacrylate-ethylmethacrylate copolymers. Journal of Biomedical Materials Research, 26(12), 1633-1649. doi:10.1002/jbm.820261208

Rodrigues, S. N., Gonçalves, I. C., Martins, M. C. L., Barbosa, M. A., & Ratner, B. D. (2006). Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. Biomaterials, 27(31), 5357-5367. doi:10.1016/j.biomaterials.2006.06.010

Daley, W. P., Peters, S. B., & Larsen, M. (2008). Extracellular matrix dynamics in development and regenerative medicine. Journal of Cell Science, 121(3), 255-264. doi:10.1242/jcs.006064

Rivron, N., Liu, J., Rouwkema, J., de Boer, J., & van Blitterswijk, C. (2008). Engineering vascularised tissues in vitro. European Cells and Materials, 15, 27-40. doi:10.22203/ecm.v015a03

SEPHEL, G., KENNEDY, R., & KUDRAVI, S. (1996). Expression of capillary basement membrane components during sequential phases of wound angiogenesis. Matrix Biology, 15(4), 263-279. doi:10.1016/s0945-053x(96)90117-1

Keresztes, Z., Rouxhet, P. G., Remacle, C., & Dupont-Gillain, C. (2005). Supramolecular assemblies of adsorbed collagen affect the adhesion of endothelial cells. Journal of Biomedical Materials Research Part A, 76A(2), 223-233. doi:10.1002/jbm.a.30472

Tzoneva, R., Seifert, B., Albrecht, W., Richau, K., Lendlein, A., & Groth, T. (2008). Poly(ether imide) membranes: studies on the effect of surface modification and protein pre-adsorption on endothelial cell adhesion, growth and function. Journal of Biomaterials Science, Polymer Edition, 19(7), 837-852. doi:10.1163/156856208784613523

Zomer Volpato, F., Fernandes Ramos, S. L., Motta, A., & Migliaresi, C. (2010). Physical and in vitro biological evaluation of a PA 6/MWCNT electrospun composite for biomedical applications. Journal of Bioactive and Compatible Polymers, 26(1), 35-47. doi:10.1177/0883911510391449

Puppi, D., Piras, A. M., Detta, N., Ylikauppila, H., Nikkola, L., Ashammakhi, N., … Chiellini, E. (2010). Poly(vinyl alcohol)-based electrospun meshes as potential candidate scaffolds in regenerative medicine. Journal of Bioactive and Compatible Polymers, 26(1), 20-34. doi:10.1177/0883911510392007

García, C. G., Ferrus, L. L., Moratal, D., Pradas, M. M., & Sánchez, M. S. (2009). Poly(L-lactide) Substrates with Tailored Surface Chemistry by Plasma Copolymerisation of Acrylic Monomers. Plasma Processes and Polymers, 6(3), 190-198. doi:10.1002/ppap.200800112

De Mel, A., Jell, G., Stevens, M. M., & Seifalian, A. M. (2008). Biofunctionalization of Biomaterials for Accelerated in Situ Endothelialization: A Review. Biomacromolecules, 9(11), 2969-2979. doi:10.1021/bm800681k

Griffith, L. G. (2002). Tissue Engineering--Current Challenges and Expanding Opportunities. Science, 295(5557), 1009-1014. doi:10.1126/science.1069210

SIPE, J. D. (2002). Tissue Engineering and Reparative Medicine. Annals of the New York Academy of Sciences, 961(1), 1-9. doi:10.1111/j.1749-6632.2002.tb03040.x

Altankov, G., & Groth, T. (1994). Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. Journal of Materials Science: Materials in Medicine, 5(9-10), 732-737. doi:10.1007/bf00120366

Altankov, G., & Groth, T. (1996). Fibronectin matrix formation and the biocompatibility of materials. Journal of Materials Science: Materials in Medicine, 7(7), 425-429. doi:10.1007/bf00122012

Farrell, D. H., Thiagarajan, P., Chung, D. W., & Davie, E. W. (1992). Role of fibrinogen alpha and gamma chain sites in platelet aggregation. Proceedings of the National Academy of Sciences, 89(22), 10729-10732. doi:10.1073/pnas.89.22.10729

Cheresh, D. A. (1987). Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proceedings of the National Academy of Sciences, 84(18), 6471-6475. doi:10.1073/pnas.84.18.6471

Cheresh, D. A., Berliner, S. A., Vicente, V., & Ruggeri, Z. M. (1989). Recognition of distinct adhesive sites on fibrinogen by related integrins on platelets and endothelial cells. Cell, 58(5), 945-953. doi:10.1016/0092-8674(89)90946-x

Gailit, J., Clarke, C., Newman, D., Tonnesen, M. G., Mosesson, M. W., & Clark, R. A. F. (1997). Human Fibroblasts Bind Directly to Fibrinogen at RGD Sites through Integrin αvβ3. Experimental Cell Research, 232(1), 118-126. doi:10.1006/excr.1997.3512

Doolittle, R. F., Watt, K. W. K., Cottrell, B. A., Strong, D. D., & Riley, M. (1979). The amino acid sequence of the α-chain of human fibrinogen. Nature, 280(5722), 464-468. doi:10.1038/280464a0

Sit, P. S., & Marchant, R. E. (2001). Surface-dependent differences in fibrin assembly visualized by atomic force microscopy. Surface Science, 491(3), 421-432. doi:10.1016/s0039-6028(01)01308-5

Toscano, A., & Santore, M. M. (2006). Fibrinogen Adsorption on Three Silica-Based Surfaces:  Conformation and Kinetics. Langmuir, 22(6), 2588-2597. doi:10.1021/la051641g

Gugutkov, D., González-García, C., Rodríguez Hernández, J. C., Altankov, G., & Salmerón-Sánchez, M. (2009). Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 25(18), 10893-10900. doi:10.1021/la9012203

Toromanov, G., González-García, C., Altankov, G., & Salmerón-Sánchez, M. (2010). Vitronectin activity on polymer substrates with controlled –OH density. Polymer, 51(11), 2329-2336. doi:10.1016/j.polymer.2010.03.041

Hernández, J. C. R., Salmerón Sánchez, M., Soria, J. M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2007). Substrate Chemistry-Dependent Conformations of Single Laminin Molecules on Polymer Surfaces are Revealed by the Phase Signal of Atomic Force Microscopy. Biophysical Journal, 93(1), 202-207. doi:10.1529/biophysj.106.102491

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record