Weisel, J. W. (2005). Fibrinogen and Fibrin. Advances in Protein Chemistry, 247-299. doi:10.1016/s0065-3233(05)70008-5
Cacciafesta, P., Humphris, A. D. L., Jandt, K. D., & Miles, M. J. (2000). Human Plasma Fibrinogen Adsorption on Ultraflat Titanium Oxide Surfaces Studied with Atomic Force Microscopy. Langmuir, 16(21), 8167-8175. doi:10.1021/la000362k
Tzoneva, R., Groth, T., Altankov, G., & Paul, D. (2002). Journal of Materials Science: Materials in Medicine, 13(12), 1235-1244. doi:10.1023/a:1021131113711
[+]
Weisel, J. W. (2005). Fibrinogen and Fibrin. Advances in Protein Chemistry, 247-299. doi:10.1016/s0065-3233(05)70008-5
Cacciafesta, P., Humphris, A. D. L., Jandt, K. D., & Miles, M. J. (2000). Human Plasma Fibrinogen Adsorption on Ultraflat Titanium Oxide Surfaces Studied with Atomic Force Microscopy. Langmuir, 16(21), 8167-8175. doi:10.1021/la000362k
Tzoneva, R., Groth, T., Altankov, G., & Paul, D. (2002). Journal of Materials Science: Materials in Medicine, 13(12), 1235-1244. doi:10.1023/a:1021131113711
Tunc, S., Maitz, M. F., Steiner, G., Vázquez, L., Pham, M. T., & Salzer, R. (2005). In situ conformational analysis of fibrinogen adsorbed on Si surfaces. Colloids and Surfaces B: Biointerfaces, 42(3-4), 219-225. doi:10.1016/j.colsurfb.2005.03.004
Gettens, R. T. T., Bai, Z., & Gilbert, J. L. (2005). Quantification of the kinetics and thermodynamics of protein adsorption using atomic force microscopy. Journal of Biomedical Materials Research Part A, 72A(3), 246-257. doi:10.1002/jbm.a.30218
Ta, T. C., & McDermott, M. T. (2000). Mapping Interfacial Chemistry Induced Variations in Protein Adsorption with Scanning Force Microscopy. Analytical Chemistry, 72(11), 2627-2634. doi:10.1021/ac991137e
Ishizaki, T., Saito, N., Sato, Y., & Takai, O. (2007). Probing into adsorption behavior of human plasma fibrinogen on self-assembled monolayers with different chemical properties by scanning probe microscopy. Surface Science, 601(18), 3861-3865. doi:10.1016/j.susc.2007.04.096
Brash JL and Horbett TA In protein at interfaces II: fundamentals and applications. In: Brash JL and Horbett TA. (eds). ACS Symposium Series No. 602. Washington, DC: American Chemical Society, 1995Chapter 1.
Gettens, R. T. T., & Gilbert, J. L. (2007). Quantification of fibrinogen adsorption onto 316L stainless steel. Journal of Biomedical Materials Research Part A, 81A(2), 465-473. doi:10.1002/jbm.a.30995
Ortega-Vinuesa, J. L., Tengvall, P., & Lundström, I. (1998). Aggregation of HSA, IgG, and Fibrinogen on Methylated Silicon Surfaces. Journal of Colloid and Interface Science, 207(2), 228-239. doi:10.1006/jcis.1998.5624
Mitsakakis, K., Lousinian, S., & Logothetidis, S. (2007). Early stages of human plasma proteins adsorption probed by Atomic Force Microscope. Biomolecular Engineering, 24(1), 119-124. doi:10.1016/j.bioeng.2006.05.013
Sit, P. S., & Marchant, R. (1999). Surface-dependent Conformations of Human Fibrinogen Observed by Atomic Force Microscopy under Aqueous Conditions. Thrombosis and Haemostasis, 82(09), 1053-1060. doi:10.1055/s-0037-1614328
Marchin, K. L., & Berrie, C. L. (2003). Conformational Changes in the Plasma Protein Fibrinogen upon Adsorption to Graphite and Mica Investigated by Atomic Force Microscopy. Langmuir, 19(23), 9883-9888. doi:10.1021/la035127r
Wertz, C. F., & Santore, M. M. (2001). Effect of Surface Hydrophobicity on Adsorption and Relaxation Kinetics of Albumin and Fibrinogen: Single-Species and Competitive Behavior. Langmuir, 17(10), 3006-3016. doi:10.1021/la0017781
Wertz, C. F., & Santore, M. M. (2002). Fibrinogen Adsorption on Hydrophilic and Hydrophobic Surfaces: Geometrical and Energetic Aspects of Interfacial Relaxations. Langmuir, 18(3), 706-715. doi:10.1021/la011075z
Rodríguez Hernández, J. C., Rico, P., Moratal, D., Monleón Pradas, M., & Salmerón-Sánchez, M. (2009). Fibrinogen Patterns and Activity on Substrates with Tailored Hydroxy Density. Macromolecular Bioscience, 9(8), 766-775. doi:10.1002/mabi.200800332
Slack, S. M., & Horbett, T. A. (1992). Changes in fibrinogen adsorbed to segmented polyurethanes and hydroxyethylmethacrylate-ethylmethacrylate copolymers. Journal of Biomedical Materials Research, 26(12), 1633-1649. doi:10.1002/jbm.820261208
Rodrigues, S. N., Gonçalves, I. C., Martins, M. C. L., Barbosa, M. A., & Ratner, B. D. (2006). Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. Biomaterials, 27(31), 5357-5367. doi:10.1016/j.biomaterials.2006.06.010
Daley, W. P., Peters, S. B., & Larsen, M. (2008). Extracellular matrix dynamics in development and regenerative medicine. Journal of Cell Science, 121(3), 255-264. doi:10.1242/jcs.006064
Rivron, N., Liu, J., Rouwkema, J., de Boer, J., & van Blitterswijk, C. (2008). Engineering vascularised tissues in vitro. European Cells and Materials, 15, 27-40. doi:10.22203/ecm.v015a03
SEPHEL, G., KENNEDY, R., & KUDRAVI, S. (1996). Expression of capillary basement membrane components during sequential phases of wound angiogenesis. Matrix Biology, 15(4), 263-279. doi:10.1016/s0945-053x(96)90117-1
Keresztes, Z., Rouxhet, P. G., Remacle, C., & Dupont-Gillain, C. (2005). Supramolecular assemblies of adsorbed collagen affect the adhesion of endothelial cells. Journal of Biomedical Materials Research Part A, 76A(2), 223-233. doi:10.1002/jbm.a.30472
Tzoneva, R., Seifert, B., Albrecht, W., Richau, K., Lendlein, A., & Groth, T. (2008). Poly(ether imide) membranes: studies on the effect of surface modification and protein pre-adsorption on endothelial cell adhesion, growth and function. Journal of Biomaterials Science, Polymer Edition, 19(7), 837-852. doi:10.1163/156856208784613523
Zomer Volpato, F., Fernandes Ramos, S. L., Motta, A., & Migliaresi, C. (2010). Physical and in vitro biological evaluation of a PA 6/MWCNT electrospun composite for biomedical applications. Journal of Bioactive and Compatible Polymers, 26(1), 35-47. doi:10.1177/0883911510391449
Puppi, D., Piras, A. M., Detta, N., Ylikauppila, H., Nikkola, L., Ashammakhi, N., … Chiellini, E. (2010). Poly(vinyl alcohol)-based electrospun meshes as potential candidate scaffolds in regenerative medicine. Journal of Bioactive and Compatible Polymers, 26(1), 20-34. doi:10.1177/0883911510392007
García, C. G., Ferrus, L. L., Moratal, D., Pradas, M. M., & Sánchez, M. S. (2009). Poly(L-lactide) Substrates with Tailored Surface Chemistry by Plasma Copolymerisation of Acrylic Monomers. Plasma Processes and Polymers, 6(3), 190-198. doi:10.1002/ppap.200800112
De Mel, A., Jell, G., Stevens, M. M., & Seifalian, A. M. (2008). Biofunctionalization of Biomaterials for Accelerated in Situ Endothelialization: A Review. Biomacromolecules, 9(11), 2969-2979. doi:10.1021/bm800681k
Griffith, L. G. (2002). Tissue Engineering--Current Challenges and Expanding Opportunities. Science, 295(5557), 1009-1014. doi:10.1126/science.1069210
SIPE, J. D. (2002). Tissue Engineering and Reparative Medicine. Annals of the New York Academy of Sciences, 961(1), 1-9. doi:10.1111/j.1749-6632.2002.tb03040.x
Altankov, G., & Groth, T. (1994). Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. Journal of Materials Science: Materials in Medicine, 5(9-10), 732-737. doi:10.1007/bf00120366
Altankov, G., & Groth, T. (1996). Fibronectin matrix formation and the biocompatibility of materials. Journal of Materials Science: Materials in Medicine, 7(7), 425-429. doi:10.1007/bf00122012
Farrell, D. H., Thiagarajan, P., Chung, D. W., & Davie, E. W. (1992). Role of fibrinogen alpha and gamma chain sites in platelet aggregation. Proceedings of the National Academy of Sciences, 89(22), 10729-10732. doi:10.1073/pnas.89.22.10729
Cheresh, D. A. (1987). Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proceedings of the National Academy of Sciences, 84(18), 6471-6475. doi:10.1073/pnas.84.18.6471
Cheresh, D. A., Berliner, S. A., Vicente, V., & Ruggeri, Z. M. (1989). Recognition of distinct adhesive sites on fibrinogen by related integrins on platelets and endothelial cells. Cell, 58(5), 945-953. doi:10.1016/0092-8674(89)90946-x
Gailit, J., Clarke, C., Newman, D., Tonnesen, M. G., Mosesson, M. W., & Clark, R. A. F. (1997). Human Fibroblasts Bind Directly to Fibrinogen at RGD Sites through Integrin αvβ3. Experimental Cell Research, 232(1), 118-126. doi:10.1006/excr.1997.3512
Doolittle, R. F., Watt, K. W. K., Cottrell, B. A., Strong, D. D., & Riley, M. (1979). The amino acid sequence of the α-chain of human fibrinogen. Nature, 280(5722), 464-468. doi:10.1038/280464a0
Sit, P. S., & Marchant, R. E. (2001). Surface-dependent differences in fibrin assembly visualized by atomic force microscopy. Surface Science, 491(3), 421-432. doi:10.1016/s0039-6028(01)01308-5
Toscano, A., & Santore, M. M. (2006). Fibrinogen Adsorption on Three Silica-Based Surfaces: Conformation and Kinetics. Langmuir, 22(6), 2588-2597. doi:10.1021/la051641g
Gugutkov, D., González-García, C., Rodríguez Hernández, J. C., Altankov, G., & Salmerón-Sánchez, M. (2009). Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 25(18), 10893-10900. doi:10.1021/la9012203
Toromanov, G., González-García, C., Altankov, G., & Salmerón-Sánchez, M. (2010). Vitronectin activity on polymer substrates with controlled –OH density. Polymer, 51(11), 2329-2336. doi:10.1016/j.polymer.2010.03.041
Hernández, J. C. R., Salmerón Sánchez, M., Soria, J. M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2007). Substrate Chemistry-Dependent Conformations of Single Laminin Molecules on Polymer Surfaces are Revealed by the Phase Signal of Atomic Force Microscopy. Biophysical Journal, 93(1), 202-207. doi:10.1529/biophysj.106.102491
[-]