Mostrar el registro sencillo del ítem
dc.contributor.author | Gugutkov, Dencho | es_ES |
dc.contributor.author | González García, Cristina | es_ES |
dc.contributor.author | Altankov, George | es_ES |
dc.contributor.author | Salmerón Sánchez, Manuel | es_ES |
dc.date.accessioned | 2020-04-17T12:49:40Z | |
dc.date.available | 2020-04-17T12:49:40Z | |
dc.date.issued | 2011 | es_ES |
dc.identifier.issn | 0883-9115 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140890 | |
dc.description.abstract | [EN] Fibrinogen (FG) adsorption on surfaces with controlled fraction of -OH groups was investigated with AFM and correlated to the initial interaction of primary endothelial cells (HUVEC). The -OH content was tailored making use of a family of copolymers consisting of ethyl acrylate (EA) and hydroxyl ethyl acrylate (HEA) in different ratios. The supramolecular distribution of FG changed from an organized network-like structure on the most hydrophobic surface (-OH 0) to dispersed molecular aggregate one as the fraction of -OH groups increases, indicating a different conformation by the adsorbed protein. The best cellular interaction was observed on the most hydrophobic (-OH 0) surface where FG assembled in a fibrin-like appearance in the absence of any thrombin. Likewise, focal adhesion formation and actin cytoskeleton development was poorer as the fraction of hydroxy groups on the surface was increased. The biological activity of the surface-induced FG network to provide 3D cues in a potential tissue engineered scaffold, making use of electrospun PEA fibers (-OH 0), seeded with human umbilical vein endothelial cells was investigated. The FG assembled on the polymer fibers gave rise to a biologically active network able to direct cell orientation along the fibers (random or aligned), promote cytoskeleton organization and focal adhesion formation. © 2011 The Author(s). | es_ES |
dc.description.sponsorship | AFM was performed under the technical guidance of the Microscopy Service at the Universidad Politecnica de Valencia, whose advice is greatly appreciated. The work was supported by the Spanish Ministry of Science and Innovation through projects nos MAT2009-14440-C02-01, MAT2009-14440-C02-02 and EULANEST PIM2010EEU-00111. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | Journal of Bioactive and Compatible Polymers | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cell-material interactions | es_ES |
dc.subject | Cell-material interface | es_ES |
dc.subject | Electrospun fibers | es_ES |
dc.subject | Endothelial cell behavior | es_ES |
dc.subject | Ethyl acrylate | es_ES |
dc.subject | Fibrinogen | es_ES |
dc.subject | Fibrinogen organization | es_ES |
dc.subject | HUVEC | es_ES |
dc.subject | Hydroxyl ethyl acrylate | es_ES |
dc.subject | Cell-material interaction | es_ES |
dc.subject | Ethyl acrylates | es_ES |
dc.subject | Adhesion | es_ES |
dc.subject | Adsorption | es_ES |
dc.subject | Electrospinning | es_ES |
dc.subject | Fibers | es_ES |
dc.subject | Hydrophobicity | es_ES |
dc.subject | Interfaces (materials) | es_ES |
dc.subject | Pressure effects | es_ES |
dc.subject | Proteins | es_ES |
dc.subject | Scaffolds (biology) | es_ES |
dc.subject | Surface chemistry | es_ES |
dc.subject | Surfaces | es_ES |
dc.subject | Tissue | es_ES |
dc.subject | Endothelial cells | es_ES |
dc.subject | Acrylic acid 2 hydroxyethyl ester | es_ES |
dc.subject | Acrylic acid derivative | es_ES |
dc.subject | Acrylic acid ethyl ester | es_ES |
dc.subject | Biomaterial | es_ES |
dc.subject | Unclassified drug | es_ES |
dc.subject | Actin filament | es_ES |
dc.subject | Article | es_ES |
dc.subject | Atomic force microscopy | es_ES |
dc.subject | Cell adhesion | es_ES |
dc.subject | Controlled study | es_ES |
dc.subject | Endothelium cell | es_ES |
dc.subject | Human | es_ES |
dc.subject | Human cell | es_ES |
dc.subject | Protein analysis | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Fibrinogen organization at the cell-material interface directs endothelial cell behavior | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/0883911511409020 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-02/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PIM2010EEU-00111/ES/GEL DE NANOFIBRAS BIOINSPIRADO PARA LA REGENERACION DE HUESO Y CARTILAGO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-01/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Gugutkov, D.; González García, C.; Altankov, G.; Salmerón Sánchez, M. (2011). Fibrinogen organization at the cell-material interface directs endothelial cell behavior. Journal of Bioactive and Compatible Polymers. 26(4):375-387. https://doi.org/10.1177/0883911511409020 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/0883911511409020 | es_ES |
dc.description.upvformatpinicio | 375 | es_ES |
dc.description.upvformatpfin | 387 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\211756 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Weisel, J. W. (2005). Fibrinogen and Fibrin. Advances in Protein Chemistry, 247-299. doi:10.1016/s0065-3233(05)70008-5 | es_ES |
dc.description.references | Cacciafesta, P., Humphris, A. D. L., Jandt, K. D., & Miles, M. J. (2000). Human Plasma Fibrinogen Adsorption on Ultraflat Titanium Oxide Surfaces Studied with Atomic Force Microscopy. Langmuir, 16(21), 8167-8175. doi:10.1021/la000362k | es_ES |
dc.description.references | Tzoneva, R., Groth, T., Altankov, G., & Paul, D. (2002). Journal of Materials Science: Materials in Medicine, 13(12), 1235-1244. doi:10.1023/a:1021131113711 | es_ES |
dc.description.references | Tunc, S., Maitz, M. F., Steiner, G., Vázquez, L., Pham, M. T., & Salzer, R. (2005). In situ conformational analysis of fibrinogen adsorbed on Si surfaces. Colloids and Surfaces B: Biointerfaces, 42(3-4), 219-225. doi:10.1016/j.colsurfb.2005.03.004 | es_ES |
dc.description.references | Gettens, R. T. T., Bai, Z., & Gilbert, J. L. (2005). Quantification of the kinetics and thermodynamics of protein adsorption using atomic force microscopy. Journal of Biomedical Materials Research Part A, 72A(3), 246-257. doi:10.1002/jbm.a.30218 | es_ES |
dc.description.references | Ta, T. C., & McDermott, M. T. (2000). Mapping Interfacial Chemistry Induced Variations in Protein Adsorption with Scanning Force Microscopy. Analytical Chemistry, 72(11), 2627-2634. doi:10.1021/ac991137e | es_ES |
dc.description.references | Ishizaki, T., Saito, N., Sato, Y., & Takai, O. (2007). Probing into adsorption behavior of human plasma fibrinogen on self-assembled monolayers with different chemical properties by scanning probe microscopy. Surface Science, 601(18), 3861-3865. doi:10.1016/j.susc.2007.04.096 | es_ES |
dc.description.references | Brash JL and Horbett TA In protein at interfaces II: fundamentals and applications. In: Brash JL and Horbett TA. (eds). ACS Symposium Series No. 602. Washington, DC: American Chemical Society, 1995Chapter 1. | es_ES |
dc.description.references | Gettens, R. T. T., & Gilbert, J. L. (2007). Quantification of fibrinogen adsorption onto 316L stainless steel. Journal of Biomedical Materials Research Part A, 81A(2), 465-473. doi:10.1002/jbm.a.30995 | es_ES |
dc.description.references | Ortega-Vinuesa, J. L., Tengvall, P., & Lundström, I. (1998). Aggregation of HSA, IgG, and Fibrinogen on Methylated Silicon Surfaces. Journal of Colloid and Interface Science, 207(2), 228-239. doi:10.1006/jcis.1998.5624 | es_ES |
dc.description.references | Mitsakakis, K., Lousinian, S., & Logothetidis, S. (2007). Early stages of human plasma proteins adsorption probed by Atomic Force Microscope. Biomolecular Engineering, 24(1), 119-124. doi:10.1016/j.bioeng.2006.05.013 | es_ES |
dc.description.references | Sit, P. S., & Marchant, R. (1999). Surface-dependent Conformations of Human Fibrinogen Observed by Atomic Force Microscopy under Aqueous Conditions. Thrombosis and Haemostasis, 82(09), 1053-1060. doi:10.1055/s-0037-1614328 | es_ES |
dc.description.references | Marchin, K. L., & Berrie, C. L. (2003). Conformational Changes in the Plasma Protein Fibrinogen upon Adsorption to Graphite and Mica Investigated by Atomic Force Microscopy. Langmuir, 19(23), 9883-9888. doi:10.1021/la035127r | es_ES |
dc.description.references | Wertz, C. F., & Santore, M. M. (2001). Effect of Surface Hydrophobicity on Adsorption and Relaxation Kinetics of Albumin and Fibrinogen: Single-Species and Competitive Behavior. Langmuir, 17(10), 3006-3016. doi:10.1021/la0017781 | es_ES |
dc.description.references | Wertz, C. F., & Santore, M. M. (2002). Fibrinogen Adsorption on Hydrophilic and Hydrophobic Surfaces: Geometrical and Energetic Aspects of Interfacial Relaxations. Langmuir, 18(3), 706-715. doi:10.1021/la011075z | es_ES |
dc.description.references | Rodríguez Hernández, J. C., Rico, P., Moratal, D., Monleón Pradas, M., & Salmerón-Sánchez, M. (2009). Fibrinogen Patterns and Activity on Substrates with Tailored Hydroxy Density. Macromolecular Bioscience, 9(8), 766-775. doi:10.1002/mabi.200800332 | es_ES |
dc.description.references | Slack, S. M., & Horbett, T. A. (1992). Changes in fibrinogen adsorbed to segmented polyurethanes and hydroxyethylmethacrylate-ethylmethacrylate copolymers. Journal of Biomedical Materials Research, 26(12), 1633-1649. doi:10.1002/jbm.820261208 | es_ES |
dc.description.references | Rodrigues, S. N., Gonçalves, I. C., Martins, M. C. L., Barbosa, M. A., & Ratner, B. D. (2006). Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. Biomaterials, 27(31), 5357-5367. doi:10.1016/j.biomaterials.2006.06.010 | es_ES |
dc.description.references | Daley, W. P., Peters, S. B., & Larsen, M. (2008). Extracellular matrix dynamics in development and regenerative medicine. Journal of Cell Science, 121(3), 255-264. doi:10.1242/jcs.006064 | es_ES |
dc.description.references | Rivron, N., Liu, J., Rouwkema, J., de Boer, J., & van Blitterswijk, C. (2008). Engineering vascularised tissues in vitro. European Cells and Materials, 15, 27-40. doi:10.22203/ecm.v015a03 | es_ES |
dc.description.references | SEPHEL, G., KENNEDY, R., & KUDRAVI, S. (1996). Expression of capillary basement membrane components during sequential phases of wound angiogenesis. Matrix Biology, 15(4), 263-279. doi:10.1016/s0945-053x(96)90117-1 | es_ES |
dc.description.references | Keresztes, Z., Rouxhet, P. G., Remacle, C., & Dupont-Gillain, C. (2005). Supramolecular assemblies of adsorbed collagen affect the adhesion of endothelial cells. Journal of Biomedical Materials Research Part A, 76A(2), 223-233. doi:10.1002/jbm.a.30472 | es_ES |
dc.description.references | Tzoneva, R., Seifert, B., Albrecht, W., Richau, K., Lendlein, A., & Groth, T. (2008). Poly(ether imide) membranes: studies on the effect of surface modification and protein pre-adsorption on endothelial cell adhesion, growth and function. Journal of Biomaterials Science, Polymer Edition, 19(7), 837-852. doi:10.1163/156856208784613523 | es_ES |
dc.description.references | Zomer Volpato, F., Fernandes Ramos, S. L., Motta, A., & Migliaresi, C. (2010). Physical and in vitro biological evaluation of a PA 6/MWCNT electrospun composite for biomedical applications. Journal of Bioactive and Compatible Polymers, 26(1), 35-47. doi:10.1177/0883911510391449 | es_ES |
dc.description.references | Puppi, D., Piras, A. M., Detta, N., Ylikauppila, H., Nikkola, L., Ashammakhi, N., … Chiellini, E. (2010). Poly(vinyl alcohol)-based electrospun meshes as potential candidate scaffolds in regenerative medicine. Journal of Bioactive and Compatible Polymers, 26(1), 20-34. doi:10.1177/0883911510392007 | es_ES |
dc.description.references | García, C. G., Ferrus, L. L., Moratal, D., Pradas, M. M., & Sánchez, M. S. (2009). Poly(L-lactide) Substrates with Tailored Surface Chemistry by Plasma Copolymerisation of Acrylic Monomers. Plasma Processes and Polymers, 6(3), 190-198. doi:10.1002/ppap.200800112 | es_ES |
dc.description.references | De Mel, A., Jell, G., Stevens, M. M., & Seifalian, A. M. (2008). Biofunctionalization of Biomaterials for Accelerated in Situ Endothelialization: A Review. Biomacromolecules, 9(11), 2969-2979. doi:10.1021/bm800681k | es_ES |
dc.description.references | Griffith, L. G. (2002). Tissue Engineering--Current Challenges and Expanding Opportunities. Science, 295(5557), 1009-1014. doi:10.1126/science.1069210 | es_ES |
dc.description.references | SIPE, J. D. (2002). Tissue Engineering and Reparative Medicine. Annals of the New York Academy of Sciences, 961(1), 1-9. doi:10.1111/j.1749-6632.2002.tb03040.x | es_ES |
dc.description.references | Altankov, G., & Groth, T. (1994). Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. Journal of Materials Science: Materials in Medicine, 5(9-10), 732-737. doi:10.1007/bf00120366 | es_ES |
dc.description.references | Altankov, G., & Groth, T. (1996). Fibronectin matrix formation and the biocompatibility of materials. Journal of Materials Science: Materials in Medicine, 7(7), 425-429. doi:10.1007/bf00122012 | es_ES |
dc.description.references | Farrell, D. H., Thiagarajan, P., Chung, D. W., & Davie, E. W. (1992). Role of fibrinogen alpha and gamma chain sites in platelet aggregation. Proceedings of the National Academy of Sciences, 89(22), 10729-10732. doi:10.1073/pnas.89.22.10729 | es_ES |
dc.description.references | Cheresh, D. A. (1987). Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proceedings of the National Academy of Sciences, 84(18), 6471-6475. doi:10.1073/pnas.84.18.6471 | es_ES |
dc.description.references | Cheresh, D. A., Berliner, S. A., Vicente, V., & Ruggeri, Z. M. (1989). Recognition of distinct adhesive sites on fibrinogen by related integrins on platelets and endothelial cells. Cell, 58(5), 945-953. doi:10.1016/0092-8674(89)90946-x | es_ES |
dc.description.references | Gailit, J., Clarke, C., Newman, D., Tonnesen, M. G., Mosesson, M. W., & Clark, R. A. F. (1997). Human Fibroblasts Bind Directly to Fibrinogen at RGD Sites through Integrin αvβ3. Experimental Cell Research, 232(1), 118-126. doi:10.1006/excr.1997.3512 | es_ES |
dc.description.references | Doolittle, R. F., Watt, K. W. K., Cottrell, B. A., Strong, D. D., & Riley, M. (1979). The amino acid sequence of the α-chain of human fibrinogen. Nature, 280(5722), 464-468. doi:10.1038/280464a0 | es_ES |
dc.description.references | Sit, P. S., & Marchant, R. E. (2001). Surface-dependent differences in fibrin assembly visualized by atomic force microscopy. Surface Science, 491(3), 421-432. doi:10.1016/s0039-6028(01)01308-5 | es_ES |
dc.description.references | Toscano, A., & Santore, M. M. (2006). Fibrinogen Adsorption on Three Silica-Based Surfaces: Conformation and Kinetics. Langmuir, 22(6), 2588-2597. doi:10.1021/la051641g | es_ES |
dc.description.references | Gugutkov, D., González-García, C., Rodríguez Hernández, J. C., Altankov, G., & Salmerón-Sánchez, M. (2009). Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 25(18), 10893-10900. doi:10.1021/la9012203 | es_ES |
dc.description.references | Toromanov, G., González-García, C., Altankov, G., & Salmerón-Sánchez, M. (2010). Vitronectin activity on polymer substrates with controlled –OH density. Polymer, 51(11), 2329-2336. doi:10.1016/j.polymer.2010.03.041 | es_ES |
dc.description.references | Hernández, J. C. R., Salmerón Sánchez, M., Soria, J. M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2007). Substrate Chemistry-Dependent Conformations of Single Laminin Molecules on Polymer Surfaces are Revealed by the Phase Signal of Atomic Force Microscopy. Biophysical Journal, 93(1), 202-207. doi:10.1529/biophysj.106.102491 | es_ES |