- -

Fibrinogen organization at the cell-material interface directs endothelial cell behavior

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fibrinogen organization at the cell-material interface directs endothelial cell behavior

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gugutkov, Dencho es_ES
dc.contributor.author González García, Cristina es_ES
dc.contributor.author Altankov, George es_ES
dc.contributor.author Salmerón Sánchez, Manuel es_ES
dc.date.accessioned 2020-04-17T12:49:40Z
dc.date.available 2020-04-17T12:49:40Z
dc.date.issued 2011 es_ES
dc.identifier.issn 0883-9115 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140890
dc.description.abstract [EN] Fibrinogen (FG) adsorption on surfaces with controlled fraction of -OH groups was investigated with AFM and correlated to the initial interaction of primary endothelial cells (HUVEC). The -OH content was tailored making use of a family of copolymers consisting of ethyl acrylate (EA) and hydroxyl ethyl acrylate (HEA) in different ratios. The supramolecular distribution of FG changed from an organized network-like structure on the most hydrophobic surface (-OH 0) to dispersed molecular aggregate one as the fraction of -OH groups increases, indicating a different conformation by the adsorbed protein. The best cellular interaction was observed on the most hydrophobic (-OH 0) surface where FG assembled in a fibrin-like appearance in the absence of any thrombin. Likewise, focal adhesion formation and actin cytoskeleton development was poorer as the fraction of hydroxy groups on the surface was increased. The biological activity of the surface-induced FG network to provide 3D cues in a potential tissue engineered scaffold, making use of electrospun PEA fibers (-OH 0), seeded with human umbilical vein endothelial cells was investigated. The FG assembled on the polymer fibers gave rise to a biologically active network able to direct cell orientation along the fibers (random or aligned), promote cytoskeleton organization and focal adhesion formation. © 2011 The Author(s). es_ES
dc.description.sponsorship AFM was performed under the technical guidance of the Microscopy Service at the Universidad Politecnica de Valencia, whose advice is greatly appreciated. The work was supported by the Spanish Ministry of Science and Innovation through projects nos MAT2009-14440-C02-01, MAT2009-14440-C02-02 and EULANEST PIM2010EEU-00111. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Journal of Bioactive and Compatible Polymers es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cell-material interactions es_ES
dc.subject Cell-material interface es_ES
dc.subject Electrospun fibers es_ES
dc.subject Endothelial cell behavior es_ES
dc.subject Ethyl acrylate es_ES
dc.subject Fibrinogen es_ES
dc.subject Fibrinogen organization es_ES
dc.subject HUVEC es_ES
dc.subject Hydroxyl ethyl acrylate es_ES
dc.subject Cell-material interaction es_ES
dc.subject Ethyl acrylates es_ES
dc.subject Adhesion es_ES
dc.subject Adsorption es_ES
dc.subject Electrospinning es_ES
dc.subject Fibers es_ES
dc.subject Hydrophobicity es_ES
dc.subject Interfaces (materials) es_ES
dc.subject Pressure effects es_ES
dc.subject Proteins es_ES
dc.subject Scaffolds (biology) es_ES
dc.subject Surface chemistry es_ES
dc.subject Surfaces es_ES
dc.subject Tissue es_ES
dc.subject Endothelial cells es_ES
dc.subject Acrylic acid 2 hydroxyethyl ester es_ES
dc.subject Acrylic acid derivative es_ES
dc.subject Acrylic acid ethyl ester es_ES
dc.subject Biomaterial es_ES
dc.subject Unclassified drug es_ES
dc.subject Actin filament es_ES
dc.subject Article es_ES
dc.subject Atomic force microscopy es_ES
dc.subject Cell adhesion es_ES
dc.subject Controlled study es_ES
dc.subject Endothelium cell es_ES
dc.subject Human es_ES
dc.subject Human cell es_ES
dc.subject Protein analysis es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Fibrinogen organization at the cell-material interface directs endothelial cell behavior es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/0883911511409020 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-02/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PIM2010EEU-00111/ES/GEL DE NANOFIBRAS BIOINSPIRADO PARA LA REGENERACION DE HUESO Y CARTILAGO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-01/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Gugutkov, D.; González García, C.; Altankov, G.; Salmerón Sánchez, M. (2011). Fibrinogen organization at the cell-material interface directs endothelial cell behavior. Journal of Bioactive and Compatible Polymers. 26(4):375-387. https://doi.org/10.1177/0883911511409020 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/0883911511409020 es_ES
dc.description.upvformatpinicio 375 es_ES
dc.description.upvformatpfin 387 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\211756 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Weisel, J. W. (2005). Fibrinogen and Fibrin. Advances in Protein Chemistry, 247-299. doi:10.1016/s0065-3233(05)70008-5 es_ES
dc.description.references Cacciafesta, P., Humphris, A. D. L., Jandt, K. D., & Miles, M. J. (2000). Human Plasma Fibrinogen Adsorption on Ultraflat Titanium Oxide Surfaces Studied with Atomic Force Microscopy. Langmuir, 16(21), 8167-8175. doi:10.1021/la000362k es_ES
dc.description.references Tzoneva, R., Groth, T., Altankov, G., & Paul, D. (2002). Journal of Materials Science: Materials in Medicine, 13(12), 1235-1244. doi:10.1023/a:1021131113711 es_ES
dc.description.references Tunc, S., Maitz, M. F., Steiner, G., Vázquez, L., Pham, M. T., & Salzer, R. (2005). In situ conformational analysis of fibrinogen adsorbed on Si surfaces. Colloids and Surfaces B: Biointerfaces, 42(3-4), 219-225. doi:10.1016/j.colsurfb.2005.03.004 es_ES
dc.description.references Gettens, R. T. T., Bai, Z., & Gilbert, J. L. (2005). Quantification of the kinetics and thermodynamics of protein adsorption using atomic force microscopy. Journal of Biomedical Materials Research Part A, 72A(3), 246-257. doi:10.1002/jbm.a.30218 es_ES
dc.description.references Ta, T. C., & McDermott, M. T. (2000). Mapping Interfacial Chemistry Induced Variations in Protein Adsorption with Scanning Force Microscopy. Analytical Chemistry, 72(11), 2627-2634. doi:10.1021/ac991137e es_ES
dc.description.references Ishizaki, T., Saito, N., Sato, Y., & Takai, O. (2007). Probing into adsorption behavior of human plasma fibrinogen on self-assembled monolayers with different chemical properties by scanning probe microscopy. Surface Science, 601(18), 3861-3865. doi:10.1016/j.susc.2007.04.096 es_ES
dc.description.references Brash JL and Horbett TA In protein at interfaces II: fundamentals and applications. In: Brash JL and Horbett TA. (eds). ACS Symposium Series No. 602. Washington, DC: American Chemical Society, 1995Chapter 1. es_ES
dc.description.references Gettens, R. T. T., & Gilbert, J. L. (2007). Quantification of fibrinogen adsorption onto 316L stainless steel. Journal of Biomedical Materials Research Part A, 81A(2), 465-473. doi:10.1002/jbm.a.30995 es_ES
dc.description.references Ortega-Vinuesa, J. L., Tengvall, P., & Lundström, I. (1998). Aggregation of HSA, IgG, and Fibrinogen on Methylated Silicon Surfaces. Journal of Colloid and Interface Science, 207(2), 228-239. doi:10.1006/jcis.1998.5624 es_ES
dc.description.references Mitsakakis, K., Lousinian, S., & Logothetidis, S. (2007). Early stages of human plasma proteins adsorption probed by Atomic Force Microscope. Biomolecular Engineering, 24(1), 119-124. doi:10.1016/j.bioeng.2006.05.013 es_ES
dc.description.references Sit, P. S., & Marchant, R. (1999). Surface-dependent Conformations of Human Fibrinogen Observed by Atomic Force Microscopy under Aqueous Conditions. Thrombosis and Haemostasis, 82(09), 1053-1060. doi:10.1055/s-0037-1614328 es_ES
dc.description.references Marchin, K. L., & Berrie, C. L. (2003). Conformational Changes in the Plasma Protein Fibrinogen upon Adsorption to Graphite and Mica Investigated by Atomic Force Microscopy. Langmuir, 19(23), 9883-9888. doi:10.1021/la035127r es_ES
dc.description.references Wertz, C. F., & Santore, M. M. (2001). Effect of Surface Hydrophobicity on Adsorption and Relaxation Kinetics of Albumin and Fibrinogen:  Single-Species and Competitive Behavior. Langmuir, 17(10), 3006-3016. doi:10.1021/la0017781 es_ES
dc.description.references Wertz, C. F., & Santore, M. M. (2002). Fibrinogen Adsorption on Hydrophilic and Hydrophobic Surfaces:  Geometrical and Energetic Aspects of Interfacial Relaxations. Langmuir, 18(3), 706-715. doi:10.1021/la011075z es_ES
dc.description.references Rodríguez Hernández, J. C., Rico, P., Moratal, D., Monleón Pradas, M., & Salmerón-Sánchez, M. (2009). Fibrinogen Patterns and Activity on Substrates with Tailored Hydroxy Density. Macromolecular Bioscience, 9(8), 766-775. doi:10.1002/mabi.200800332 es_ES
dc.description.references Slack, S. M., & Horbett, T. A. (1992). Changes in fibrinogen adsorbed to segmented polyurethanes and hydroxyethylmethacrylate-ethylmethacrylate copolymers. Journal of Biomedical Materials Research, 26(12), 1633-1649. doi:10.1002/jbm.820261208 es_ES
dc.description.references Rodrigues, S. N., Gonçalves, I. C., Martins, M. C. L., Barbosa, M. A., & Ratner, B. D. (2006). Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. Biomaterials, 27(31), 5357-5367. doi:10.1016/j.biomaterials.2006.06.010 es_ES
dc.description.references Daley, W. P., Peters, S. B., & Larsen, M. (2008). Extracellular matrix dynamics in development and regenerative medicine. Journal of Cell Science, 121(3), 255-264. doi:10.1242/jcs.006064 es_ES
dc.description.references Rivron, N., Liu, J., Rouwkema, J., de Boer, J., & van Blitterswijk, C. (2008). Engineering vascularised tissues in vitro. European Cells and Materials, 15, 27-40. doi:10.22203/ecm.v015a03 es_ES
dc.description.references SEPHEL, G., KENNEDY, R., & KUDRAVI, S. (1996). Expression of capillary basement membrane components during sequential phases of wound angiogenesis. Matrix Biology, 15(4), 263-279. doi:10.1016/s0945-053x(96)90117-1 es_ES
dc.description.references Keresztes, Z., Rouxhet, P. G., Remacle, C., & Dupont-Gillain, C. (2005). Supramolecular assemblies of adsorbed collagen affect the adhesion of endothelial cells. Journal of Biomedical Materials Research Part A, 76A(2), 223-233. doi:10.1002/jbm.a.30472 es_ES
dc.description.references Tzoneva, R., Seifert, B., Albrecht, W., Richau, K., Lendlein, A., & Groth, T. (2008). Poly(ether imide) membranes: studies on the effect of surface modification and protein pre-adsorption on endothelial cell adhesion, growth and function. Journal of Biomaterials Science, Polymer Edition, 19(7), 837-852. doi:10.1163/156856208784613523 es_ES
dc.description.references Zomer Volpato, F., Fernandes Ramos, S. L., Motta, A., & Migliaresi, C. (2010). Physical and in vitro biological evaluation of a PA 6/MWCNT electrospun composite for biomedical applications. Journal of Bioactive and Compatible Polymers, 26(1), 35-47. doi:10.1177/0883911510391449 es_ES
dc.description.references Puppi, D., Piras, A. M., Detta, N., Ylikauppila, H., Nikkola, L., Ashammakhi, N., … Chiellini, E. (2010). Poly(vinyl alcohol)-based electrospun meshes as potential candidate scaffolds in regenerative medicine. Journal of Bioactive and Compatible Polymers, 26(1), 20-34. doi:10.1177/0883911510392007 es_ES
dc.description.references García, C. G., Ferrus, L. L., Moratal, D., Pradas, M. M., & Sánchez, M. S. (2009). Poly(L-lactide) Substrates with Tailored Surface Chemistry by Plasma Copolymerisation of Acrylic Monomers. Plasma Processes and Polymers, 6(3), 190-198. doi:10.1002/ppap.200800112 es_ES
dc.description.references De Mel, A., Jell, G., Stevens, M. M., & Seifalian, A. M. (2008). Biofunctionalization of Biomaterials for Accelerated in Situ Endothelialization: A Review. Biomacromolecules, 9(11), 2969-2979. doi:10.1021/bm800681k es_ES
dc.description.references Griffith, L. G. (2002). Tissue Engineering--Current Challenges and Expanding Opportunities. Science, 295(5557), 1009-1014. doi:10.1126/science.1069210 es_ES
dc.description.references SIPE, J. D. (2002). Tissue Engineering and Reparative Medicine. Annals of the New York Academy of Sciences, 961(1), 1-9. doi:10.1111/j.1749-6632.2002.tb03040.x es_ES
dc.description.references Altankov, G., & Groth, T. (1994). Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. Journal of Materials Science: Materials in Medicine, 5(9-10), 732-737. doi:10.1007/bf00120366 es_ES
dc.description.references Altankov, G., & Groth, T. (1996). Fibronectin matrix formation and the biocompatibility of materials. Journal of Materials Science: Materials in Medicine, 7(7), 425-429. doi:10.1007/bf00122012 es_ES
dc.description.references Farrell, D. H., Thiagarajan, P., Chung, D. W., & Davie, E. W. (1992). Role of fibrinogen alpha and gamma chain sites in platelet aggregation. Proceedings of the National Academy of Sciences, 89(22), 10729-10732. doi:10.1073/pnas.89.22.10729 es_ES
dc.description.references Cheresh, D. A. (1987). Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proceedings of the National Academy of Sciences, 84(18), 6471-6475. doi:10.1073/pnas.84.18.6471 es_ES
dc.description.references Cheresh, D. A., Berliner, S. A., Vicente, V., & Ruggeri, Z. M. (1989). Recognition of distinct adhesive sites on fibrinogen by related integrins on platelets and endothelial cells. Cell, 58(5), 945-953. doi:10.1016/0092-8674(89)90946-x es_ES
dc.description.references Gailit, J., Clarke, C., Newman, D., Tonnesen, M. G., Mosesson, M. W., & Clark, R. A. F. (1997). Human Fibroblasts Bind Directly to Fibrinogen at RGD Sites through Integrin αvβ3. Experimental Cell Research, 232(1), 118-126. doi:10.1006/excr.1997.3512 es_ES
dc.description.references Doolittle, R. F., Watt, K. W. K., Cottrell, B. A., Strong, D. D., & Riley, M. (1979). The amino acid sequence of the α-chain of human fibrinogen. Nature, 280(5722), 464-468. doi:10.1038/280464a0 es_ES
dc.description.references Sit, P. S., & Marchant, R. E. (2001). Surface-dependent differences in fibrin assembly visualized by atomic force microscopy. Surface Science, 491(3), 421-432. doi:10.1016/s0039-6028(01)01308-5 es_ES
dc.description.references Toscano, A., & Santore, M. M. (2006). Fibrinogen Adsorption on Three Silica-Based Surfaces:  Conformation and Kinetics. Langmuir, 22(6), 2588-2597. doi:10.1021/la051641g es_ES
dc.description.references Gugutkov, D., González-García, C., Rodríguez Hernández, J. C., Altankov, G., & Salmerón-Sánchez, M. (2009). Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 25(18), 10893-10900. doi:10.1021/la9012203 es_ES
dc.description.references Toromanov, G., González-García, C., Altankov, G., & Salmerón-Sánchez, M. (2010). Vitronectin activity on polymer substrates with controlled –OH density. Polymer, 51(11), 2329-2336. doi:10.1016/j.polymer.2010.03.041 es_ES
dc.description.references Hernández, J. C. R., Salmerón Sánchez, M., Soria, J. M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2007). Substrate Chemistry-Dependent Conformations of Single Laminin Molecules on Polymer Surfaces are Revealed by the Phase Signal of Atomic Force Microscopy. Biophysical Journal, 93(1), 202-207. doi:10.1529/biophysj.106.102491 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem