- -

Precision analysis and dynamic stability in the numerical solution of the two-dimensional wheel/rail tangential contact problem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Precision analysis and dynamic stability in the numerical solution of the two-dimensional wheel/rail tangential contact problem

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Giménez, José Germán es_ES
dc.contributor.author Alonso Pazos, Asier es_ES
dc.contributor.author Baeza González, Luis Miguel es_ES
dc.date.accessioned 2020-04-22T08:00:48Z
dc.date.available 2020-04-22T08:00:48Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0042-3114 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141286
dc.description This is an Accepted Manuscript of an article published by Taylor & Francis in Vehicle System Dynamics on 2018, available online: https://doi.org/10.1080/00423114.2018.1552365 es_ES
dc.description.abstract [EN] In this paper the two-dimensional contact problem is analysed through different mesh topologies and strategies for approaching equations, namely; the collocation method, Galerkin, and the polynomial approach. The two-dimensional asymptotic problem (linear theory) associated with very small creepage (or infinite friction coefficient) is taken as a reference in order to analyse the numerical methods, and its solution is tackled in three different ways, namely steady-state problem, dynamic stability problem, and non-steady state problem in the frequency domain. In addition, two elastic displacements derivatives calculation methods are explored: analytic and finite differences. The results of this work establish the calculation conditions that are necessary to guarantee dynamic stability and the absence of numerical singularities, as well as the parameters for using the method that allows for maximum precision at the minimum computational cost to be reached. es_ES
dc.description.sponsorship The authors gratefully acknowledge the financial support of the Spanish Ministry of Economy, Industry and Competitiveness and the European Regional Development Fund (project TRA2017-84701-R), as well as the European Commission through the projects 'RUN2Rail - Innovative RUNning gear soluTiOns for new dependable, sustainable, intelligent and comfortable RAIL vehicles' (Horizon 2020 Shift2Rail JU call 2017, grant number 777564) and 'PIVOT - Performance Improvement for Vehicles On Track' (Horizon 2020 Shift2Rail JU call 2017, grant number 777629). es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Vehicle System Dynamics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Wheel es_ES
dc.subject Rail Contact es_ES
dc.subject Rolling Contact es_ES
dc.subject Precision Analysis es_ES
dc.subject Variational Theory es_ES
dc.subject CONTACT es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Precision analysis and dynamic stability in the numerical solution of the two-dimensional wheel/rail tangential contact problem es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00423114.2018.1552365 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/777564/EU/Innovative RUNning gear soluTiOns for new dependable, sustainable, intelligent and comfortable RAIL vehicles/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84701-R/ES/DESARROLLO DE UN MODELO INTEGRAL DE INTERACCION VEHICULO%2FVIA EN CURVA PARA LA REDUCCION DEL IMPACTO ACUSTICO DEL TRANSPORTE FERROVIARIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/777629/EU/Performance Improvement for Vehicles on Track/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Giménez, JG.; Alonso Pazos, A.; Baeza González, LM. (2018). Precision analysis and dynamic stability in the numerical solution of the two-dimensional wheel/rail tangential contact problem. Vehicle System Dynamics. 57(12):1822-1846. https://doi.org/10.1080/00423114.2018.1552365 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/00423114.2018.1552365 es_ES
dc.description.upvformatpinicio 1822 es_ES
dc.description.upvformatpfin 1846 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 57 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\387380 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Rodríguez-Tembleque, L., Abascal, R., & Aliabadi, M. H. (2012). Anisotropic wear framework for 3D contact and rolling problems. Computer Methods in Applied Mechanics and Engineering, 241-244, 1-19. doi:10.1016/j.cma.2012.05.025 es_ES
dc.description.references On the action of a locomotive driving wheel. (1926). Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 112(760), 151-157. doi:10.1098/rspa.1926.0100 es_ES
dc.description.references Kalker JJ. On the rolling contact of two elastic bodies in the presence of dry friction [PhD Thesis]. Delft University of Technology, 1973. es_ES
dc.description.references KALKER, J. J. (1977). Variational Principles of Contact Elastostatics. IMA Journal of Applied Mathematics, 20(2), 199-219. doi:10.1093/imamat/20.2.199 es_ES
dc.description.references Kalker, J. J. (1990). Three-Dimensional Elastic Bodies in Rolling Contact. Solid Mechanics and Its Applications. doi:10.1007/978-94-015-7889-9 es_ES
dc.description.references Giner, J., Baeza, L., Vila, P., & Alonso, A. (2017). Study of the Falling Friction Effect on Rolling Contact Parameters. Tribology Letters, 65(1). doi:10.1007/s11249-016-0810-8 es_ES
dc.description.references KALKER, J. J. (1982). A Fast Algorithm for the Simplified Theory of Rolling Contact. Vehicle System Dynamics, 11(1), 1-13. doi:10.1080/00423118208968684 es_ES
dc.description.references Giménez, J., Alonso, A., & Gómez *, E. (2005). Introduction of a friction coefficient dependent on the slip in the FastSim algorithm. Vehicle System Dynamics, 43(4), 233-244. doi:10.1080/00423110412331282913 es_ES
dc.description.references Guiral, A., Alonso, A., Baeza, L., & Giménez, J. G. (2013). Non-steady state modelling of wheel–rail contact problem. Vehicle System Dynamics, 51(1), 91-108. doi:10.1080/00423114.2012.713499 es_ES
dc.description.references Baeza, L., Vila, P., Roda, A., & Fayos, J. (2008). Prediction of corrugation in rails using a non-stationary wheel-rail contact model. Wear, 265(9-10), 1156-1162. doi:10.1016/j.wear.2008.01.024 es_ES
dc.description.references Hu, G., & Wriggers, P. (2002). On the adaptive finite element method of steady-state rolling contact for hyperelasticity in finite deformations. Computer Methods in Applied Mechanics and Engineering, 191(13-14), 1333-1348. doi:10.1016/s0045-7825(01)00326-7 es_ES
dc.description.references KNOTHE, K., & GROSS-THEBING, A. (1986). Derivation of Frequency Dependent Creep Coefficients Based on an Elastic Half-Space Model. Vehicle System Dynamics, 15(3), 133-153. doi:10.1080/00423118608968848 es_ES
dc.description.references Galin LA. Contact Problems in the Theory of Elasticity, Department of Mathematics, School of Physical Sciences and Applied Mathematics, North Carolina State College, 1961. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem