Mostrar el registro sencillo del ítem
dc.contributor.author | Giménez, José Germán | es_ES |
dc.contributor.author | Alonso Pazos, Asier | es_ES |
dc.contributor.author | Baeza González, Luis Miguel | es_ES |
dc.date.accessioned | 2020-04-22T08:00:48Z | |
dc.date.available | 2020-04-22T08:00:48Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0042-3114 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/141286 | |
dc.description | This is an Accepted Manuscript of an article published by Taylor & Francis in Vehicle System Dynamics on 2018, available online: https://doi.org/10.1080/00423114.2018.1552365 | es_ES |
dc.description.abstract | [EN] In this paper the two-dimensional contact problem is analysed through different mesh topologies and strategies for approaching equations, namely; the collocation method, Galerkin, and the polynomial approach. The two-dimensional asymptotic problem (linear theory) associated with very small creepage (or infinite friction coefficient) is taken as a reference in order to analyse the numerical methods, and its solution is tackled in three different ways, namely steady-state problem, dynamic stability problem, and non-steady state problem in the frequency domain. In addition, two elastic displacements derivatives calculation methods are explored: analytic and finite differences. The results of this work establish the calculation conditions that are necessary to guarantee dynamic stability and the absence of numerical singularities, as well as the parameters for using the method that allows for maximum precision at the minimum computational cost to be reached. | es_ES |
dc.description.sponsorship | The authors gratefully acknowledge the financial support of the Spanish Ministry of Economy, Industry and Competitiveness and the European Regional Development Fund (project TRA2017-84701-R), as well as the European Commission through the projects 'RUN2Rail - Innovative RUNning gear soluTiOns for new dependable, sustainable, intelligent and comfortable RAIL vehicles' (Horizon 2020 Shift2Rail JU call 2017, grant number 777564) and 'PIVOT - Performance Improvement for Vehicles On Track' (Horizon 2020 Shift2Rail JU call 2017, grant number 777629). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Vehicle System Dynamics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Wheel | es_ES |
dc.subject | Rail Contact | es_ES |
dc.subject | Rolling Contact | es_ES |
dc.subject | Precision Analysis | es_ES |
dc.subject | Variational Theory | es_ES |
dc.subject | CONTACT | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Precision analysis and dynamic stability in the numerical solution of the two-dimensional wheel/rail tangential contact problem | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00423114.2018.1552365 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/777564/EU/Innovative RUNning gear soluTiOns for new dependable, sustainable, intelligent and comfortable RAIL vehicles/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84701-R/ES/DESARROLLO DE UN MODELO INTEGRAL DE INTERACCION VEHICULO%2FVIA EN CURVA PARA LA REDUCCION DEL IMPACTO ACUSTICO DEL TRANSPORTE FERROVIARIO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/777629/EU/Performance Improvement for Vehicles on Track/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Giménez, JG.; Alonso Pazos, A.; Baeza González, LM. (2018). Precision analysis and dynamic stability in the numerical solution of the two-dimensional wheel/rail tangential contact problem. Vehicle System Dynamics. 57(12):1822-1846. https://doi.org/10.1080/00423114.2018.1552365 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/00423114.2018.1552365 | es_ES |
dc.description.upvformatpinicio | 1822 | es_ES |
dc.description.upvformatpfin | 1846 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 57 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.pasarela | S\387380 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Rodríguez-Tembleque, L., Abascal, R., & Aliabadi, M. H. (2012). Anisotropic wear framework for 3D contact and rolling problems. Computer Methods in Applied Mechanics and Engineering, 241-244, 1-19. doi:10.1016/j.cma.2012.05.025 | es_ES |
dc.description.references | On the action of a locomotive driving wheel. (1926). Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 112(760), 151-157. doi:10.1098/rspa.1926.0100 | es_ES |
dc.description.references | Kalker JJ. On the rolling contact of two elastic bodies in the presence of dry friction [PhD Thesis]. Delft University of Technology, 1973. | es_ES |
dc.description.references | KALKER, J. J. (1977). Variational Principles of Contact Elastostatics. IMA Journal of Applied Mathematics, 20(2), 199-219. doi:10.1093/imamat/20.2.199 | es_ES |
dc.description.references | Kalker, J. J. (1990). Three-Dimensional Elastic Bodies in Rolling Contact. Solid Mechanics and Its Applications. doi:10.1007/978-94-015-7889-9 | es_ES |
dc.description.references | Giner, J., Baeza, L., Vila, P., & Alonso, A. (2017). Study of the Falling Friction Effect on Rolling Contact Parameters. Tribology Letters, 65(1). doi:10.1007/s11249-016-0810-8 | es_ES |
dc.description.references | KALKER, J. J. (1982). A Fast Algorithm for the Simplified Theory of Rolling Contact. Vehicle System Dynamics, 11(1), 1-13. doi:10.1080/00423118208968684 | es_ES |
dc.description.references | Giménez, J., Alonso, A., & Gómez *, E. (2005). Introduction of a friction coefficient dependent on the slip in the FastSim algorithm. Vehicle System Dynamics, 43(4), 233-244. doi:10.1080/00423110412331282913 | es_ES |
dc.description.references | Guiral, A., Alonso, A., Baeza, L., & Giménez, J. G. (2013). Non-steady state modelling of wheel–rail contact problem. Vehicle System Dynamics, 51(1), 91-108. doi:10.1080/00423114.2012.713499 | es_ES |
dc.description.references | Baeza, L., Vila, P., Roda, A., & Fayos, J. (2008). Prediction of corrugation in rails using a non-stationary wheel-rail contact model. Wear, 265(9-10), 1156-1162. doi:10.1016/j.wear.2008.01.024 | es_ES |
dc.description.references | Hu, G., & Wriggers, P. (2002). On the adaptive finite element method of steady-state rolling contact for hyperelasticity in finite deformations. Computer Methods in Applied Mechanics and Engineering, 191(13-14), 1333-1348. doi:10.1016/s0045-7825(01)00326-7 | es_ES |
dc.description.references | KNOTHE, K., & GROSS-THEBING, A. (1986). Derivation of Frequency Dependent Creep Coefficients Based on an Elastic Half-Space Model. Vehicle System Dynamics, 15(3), 133-153. doi:10.1080/00423118608968848 | es_ES |
dc.description.references | Galin LA. Contact Problems in the Theory of Elasticity, Department of Mathematics, School of Physical Sciences and Applied Mathematics, North Carolina State College, 1961. | es_ES |