- -

Precision analysis and dynamic stability in the numerical solution of the two-dimensional wheel/rail tangential contact problem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Precision analysis and dynamic stability in the numerical solution of the two-dimensional wheel/rail tangential contact problem

Mostrar el registro completo del ítem

Giménez, JG.; Alonso Pazos, A.; Baeza González, LM. (2018). Precision analysis and dynamic stability in the numerical solution of the two-dimensional wheel/rail tangential contact problem. Vehicle System Dynamics. 57(12):1822-1846. https://doi.org/10.1080/00423114.2018.1552365

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/141286

Ficheros en el ítem

Metadatos del ítem

Título: Precision analysis and dynamic stability in the numerical solution of the two-dimensional wheel/rail tangential contact problem
Autor: Giménez, José Germán Alonso Pazos, Asier Baeza González, Luis Miguel
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] In this paper the two-dimensional contact problem is analysed through different mesh topologies and strategies for approaching equations, namely; the collocation method, Galerkin, and the polynomial approach. The ...[+]
Palabras clave: Wheel , Rail Contact , Rolling Contact , Precision Analysis , Variational Theory , CONTACT
Derechos de uso: Reserva de todos los derechos
Fuente:
Vehicle System Dynamics. (issn: 0042-3114 )
DOI: 10.1080/00423114.2018.1552365
Editorial:
Taylor & Francis
Versión del editor: https://doi.org/10.1080/00423114.2018.1552365
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/777564/EU/Innovative RUNning gear soluTiOns for new dependable, sustainable, intelligent and comfortable RAIL vehicles/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84701-R/ES/DESARROLLO DE UN MODELO INTEGRAL DE INTERACCION VEHICULO%2FVIA EN CURVA PARA LA REDUCCION DEL IMPACTO ACUSTICO DEL TRANSPORTE FERROVIARIO/
info:eu-repo/grantAgreement/EC/H2020/777629/EU/Performance Improvement for Vehicles on Track/
Descripción: This is an Accepted Manuscript of an article published by Taylor & Francis in Vehicle System Dynamics on 2018, available online: https://doi.org/10.1080/00423114.2018.1552365
Agradecimientos:
The authors gratefully acknowledge the financial support of the Spanish Ministry of Economy, Industry and Competitiveness and the European Regional Development Fund (project TRA2017-84701-R), as well as the European ...[+]
Tipo: Artículo

References

Rodríguez-Tembleque, L., Abascal, R., & Aliabadi, M. H. (2012). Anisotropic wear framework for 3D contact and rolling problems. Computer Methods in Applied Mechanics and Engineering, 241-244, 1-19. doi:10.1016/j.cma.2012.05.025

On the action of a locomotive driving wheel. (1926). Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 112(760), 151-157. doi:10.1098/rspa.1926.0100

Kalker JJ. On the rolling contact of two elastic bodies in the presence of dry friction [PhD Thesis]. Delft University of Technology, 1973. [+]
Rodríguez-Tembleque, L., Abascal, R., & Aliabadi, M. H. (2012). Anisotropic wear framework for 3D contact and rolling problems. Computer Methods in Applied Mechanics and Engineering, 241-244, 1-19. doi:10.1016/j.cma.2012.05.025

On the action of a locomotive driving wheel. (1926). Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 112(760), 151-157. doi:10.1098/rspa.1926.0100

Kalker JJ. On the rolling contact of two elastic bodies in the presence of dry friction [PhD Thesis]. Delft University of Technology, 1973.

KALKER, J. J. (1977). Variational Principles of Contact Elastostatics. IMA Journal of Applied Mathematics, 20(2), 199-219. doi:10.1093/imamat/20.2.199

Kalker, J. J. (1990). Three-Dimensional Elastic Bodies in Rolling Contact. Solid Mechanics and Its Applications. doi:10.1007/978-94-015-7889-9

Giner, J., Baeza, L., Vila, P., & Alonso, A. (2017). Study of the Falling Friction Effect on Rolling Contact Parameters. Tribology Letters, 65(1). doi:10.1007/s11249-016-0810-8

KALKER, J. J. (1982). A Fast Algorithm for the Simplified Theory of Rolling Contact. Vehicle System Dynamics, 11(1), 1-13. doi:10.1080/00423118208968684

Giménez, J., Alonso, A., & Gómez *, E. (2005). Introduction of a friction coefficient dependent on the slip in the FastSim algorithm. Vehicle System Dynamics, 43(4), 233-244. doi:10.1080/00423110412331282913

Guiral, A., Alonso, A., Baeza, L., & Giménez, J. G. (2013). Non-steady state modelling of wheel–rail contact problem. Vehicle System Dynamics, 51(1), 91-108. doi:10.1080/00423114.2012.713499

Baeza, L., Vila, P., Roda, A., & Fayos, J. (2008). Prediction of corrugation in rails using a non-stationary wheel-rail contact model. Wear, 265(9-10), 1156-1162. doi:10.1016/j.wear.2008.01.024

Hu, G., & Wriggers, P. (2002). On the adaptive finite element method of steady-state rolling contact for hyperelasticity in finite deformations. Computer Methods in Applied Mechanics and Engineering, 191(13-14), 1333-1348. doi:10.1016/s0045-7825(01)00326-7

KNOTHE, K., & GROSS-THEBING, A. (1986). Derivation of Frequency Dependent Creep Coefficients Based on an Elastic Half-Space Model. Vehicle System Dynamics, 15(3), 133-153. doi:10.1080/00423118608968848

Galin LA. Contact Problems in the Theory of Elasticity, Department of Mathematics, School of Physical Sciences and Applied Mathematics, North Carolina State College, 1961.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem