Rodríguez-Tembleque, L., Abascal, R., & Aliabadi, M. H. (2012). Anisotropic wear framework for 3D contact and rolling problems. Computer Methods in Applied Mechanics and Engineering, 241-244, 1-19. doi:10.1016/j.cma.2012.05.025
On the action of a locomotive driving wheel. (1926). Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 112(760), 151-157. doi:10.1098/rspa.1926.0100
Kalker JJ. On the rolling contact of two elastic bodies in the presence of dry friction [PhD Thesis]. Delft University of Technology, 1973.
[+]
Rodríguez-Tembleque, L., Abascal, R., & Aliabadi, M. H. (2012). Anisotropic wear framework for 3D contact and rolling problems. Computer Methods in Applied Mechanics and Engineering, 241-244, 1-19. doi:10.1016/j.cma.2012.05.025
On the action of a locomotive driving wheel. (1926). Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 112(760), 151-157. doi:10.1098/rspa.1926.0100
Kalker JJ. On the rolling contact of two elastic bodies in the presence of dry friction [PhD Thesis]. Delft University of Technology, 1973.
KALKER, J. J. (1977). Variational Principles of Contact Elastostatics. IMA Journal of Applied Mathematics, 20(2), 199-219. doi:10.1093/imamat/20.2.199
Kalker, J. J. (1990). Three-Dimensional Elastic Bodies in Rolling Contact. Solid Mechanics and Its Applications. doi:10.1007/978-94-015-7889-9
Giner, J., Baeza, L., Vila, P., & Alonso, A. (2017). Study of the Falling Friction Effect on Rolling Contact Parameters. Tribology Letters, 65(1). doi:10.1007/s11249-016-0810-8
KALKER, J. J. (1982). A Fast Algorithm for the Simplified Theory of Rolling Contact. Vehicle System Dynamics, 11(1), 1-13. doi:10.1080/00423118208968684
Giménez, J., Alonso, A., & Gómez *, E. (2005). Introduction of a friction coefficient dependent on the slip in the FastSim algorithm. Vehicle System Dynamics, 43(4), 233-244. doi:10.1080/00423110412331282913
Guiral, A., Alonso, A., Baeza, L., & Giménez, J. G. (2013). Non-steady state modelling of wheel–rail contact problem. Vehicle System Dynamics, 51(1), 91-108. doi:10.1080/00423114.2012.713499
Baeza, L., Vila, P., Roda, A., & Fayos, J. (2008). Prediction of corrugation in rails using a non-stationary wheel-rail contact model. Wear, 265(9-10), 1156-1162. doi:10.1016/j.wear.2008.01.024
Hu, G., & Wriggers, P. (2002). On the adaptive finite element method of steady-state rolling contact for hyperelasticity in finite deformations. Computer Methods in Applied Mechanics and Engineering, 191(13-14), 1333-1348. doi:10.1016/s0045-7825(01)00326-7
KNOTHE, K., & GROSS-THEBING, A. (1986). Derivation of Frequency Dependent Creep Coefficients Based on an Elastic Half-Space Model. Vehicle System Dynamics, 15(3), 133-153. doi:10.1080/00423118608968848
Galin LA. Contact Problems in the Theory of Elasticity, Department of Mathematics, School of Physical Sciences and Applied Mathematics, North Carolina State College, 1961.
[-]