Quiles-Carrillo, L., Montanes, N., Boronat, T., Balart, R., & Torres-Giner, S. (2017). Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion. Polymer Testing, 61, 421-429. doi:10.1016/j.polymertesting.2017.06.004
Chiellini, E., Cinelli, P., Chiellini, F., & Imam, S. H. (2004). Environmentally Degradable Bio-Based Polymeric Blends and Composites. Macromolecular Bioscience, 4(3), 218-231. doi:10.1002/mabi.200300126
Majhi, S. K., Nayak, S. K., Mohanty, S., & Unnikrishnan, L. (2010). Mechanical and fracture behavior of banana fiber reinforced Polylactic acid biocomposites. International Journal of Plastics Technology, 14(S1), 57-75. doi:10.1007/s12588-010-0010-6
[+]
Quiles-Carrillo, L., Montanes, N., Boronat, T., Balart, R., & Torres-Giner, S. (2017). Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion. Polymer Testing, 61, 421-429. doi:10.1016/j.polymertesting.2017.06.004
Chiellini, E., Cinelli, P., Chiellini, F., & Imam, S. H. (2004). Environmentally Degradable Bio-Based Polymeric Blends and Composites. Macromolecular Bioscience, 4(3), 218-231. doi:10.1002/mabi.200300126
Majhi, S. K., Nayak, S. K., Mohanty, S., & Unnikrishnan, L. (2010). Mechanical and fracture behavior of banana fiber reinforced Polylactic acid biocomposites. International Journal of Plastics Technology, 14(S1), 57-75. doi:10.1007/s12588-010-0010-6
Thakur, V. K., Thakur, M. K., Raghavan, P., & Kessler, M. R. (2014). Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. ACS Sustainable Chemistry & Engineering, 2(5), 1072-1092. doi:10.1021/sc500087z
Yang, H.-S., Kim, H.-J., Son, J., Park, H.-J., Lee, B.-J., & Hwang, T.-S. (2004). Rice-husk flour filled polypropylene composites; mechanical and morphological study. Composite Structures, 63(3-4), 305-312. doi:10.1016/s0263-8223(03)00179-x
Cheng, S., Lau, K., Liu, T., Zhao, Y., Lam, P.-M., & Yin, Y. (2009). Mechanical and thermal properties of chicken feather fiber/PLA green composites. Composites Part B: Engineering, 40(7), 650-654. doi:10.1016/j.compositesb.2009.04.011
Huda, M. S., Mohanty, A. K., Drzal, L. T., Schut, E., & Misra, M. (2005). «Green» composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation. Journal of Materials Science, 40(16), 4221-4229. doi:10.1007/s10853-005-1998-4
Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092
Koronis, G., Silva, A., & Fontul, M. (2013). Green composites: A review of adequate materials for automotive applications. Composites Part B: Engineering, 44(1), 120-127. doi:10.1016/j.compositesb.2012.07.004
Dicker, M. P. M., Duckworth, P. F., Baker, A. B., Francois, G., Hazzard, M. K., & Weaver, P. M. (2014). Green composites: A review of material attributes and complementary applications. Composites Part A: Applied Science and Manufacturing, 56, 280-289. doi:10.1016/j.compositesa.2013.10.014
Bajpai, P. K., Singh, I., & Madaan, J. (2012). Development and characterization of PLA-based green composites. Journal of Thermoplastic Composite Materials, 27(1), 52-81. doi:10.1177/0892705712439571
Zini, E., & Scandola, M. (2011). Green composites: An overview. Polymer Composites, 32(12), 1905-1915. doi:10.1002/pc.21224
Laka, M. (2003). Mechanics of Composite Materials, 39(2), 183-188. doi:10.1023/a:1023469614577
Abdul Khalil, H. P. S., Bhat, A. H., & Ireana Yusra, A. F. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87(2), 963-979. doi:10.1016/j.carbpol.2011.08.078
Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037
Ndazi, B. S., & Karlsson, S. (2011). Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polymer Letters, 5(2), 119-131. doi:10.3144/expresspolymlett.2011.13
Yussuf, A. A., Massoumi, I., & Hassan, A. (2010). Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. Journal of Polymers and the Environment, 18(3), 422-429. doi:10.1007/s10924-010-0185-0
NISHIKAWA, Y., NAGASE, N., & FUKUSHIMA, K. (2009). Application of Peanut Hulls as Filler for Plastics. Journal of Environment and Engineering, 4(1), 124-134. doi:10.1299/jee.4.124
Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940
Sanchez-Vazquez, S. A., Hailes, H. C., & Evans, J. R. G. (2013). Hydrophobic Polymers from Food Waste: Resources and Synthesis. Polymer Reviews, 53(4), 627-694. doi:10.1080/15583724.2013.834933
Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica
seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042
Coltro, L., Mourad, A. L., Kletecke, R. M., Mendonça, T. A., & Germer, S. P. M. (2009). Assessing the environmental profile of orange production in Brazil. The International Journal of Life Cycle Assessment, 14(7), 656-664. doi:10.1007/s11367-009-0097-1
Rezzadori, K., Benedetti, S., & Amante, E. R. (2012). Proposals for the residues recovery: Orange waste as raw material for new products. Food and Bioproducts Processing, 90(4), 606-614. doi:10.1016/j.fbp.2012.06.002
Borah, J. S., & Kim, D. S. (2016). Recent development in thermoplastic/wood composites and nanocomposites: A review. Korean Journal of Chemical Engineering, 33(11), 3035-3049. doi:10.1007/s11814-016-0183-6
Yang, H.-S., Kim, H.-J., Park, H.-J., Lee, B.-J., & Hwang, T.-S. (2006). Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Composite Structures, 72(4), 429-437. doi:10.1016/j.compstruct.2005.01.013
Raquez, J.-M., Degée, P., Nabar, Y., Narayan, R., & Dubois, P. (2006). Biodegradable materials by reactive extrusion: from catalyzed polymerization to functionalization and blend compatibilization. Comptes Rendus Chimie, 9(11-12), 1370-1379. doi:10.1016/j.crci.2006.09.004
Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057
Meng, Q.-K., Heuzey, M.-C., & Carreau, P. J. (2012). Effects of a Multifunctional Polymeric Chain Extender on the Properties of Polylactide and Polylactide/Clay Nanocomposites. International Polymer Processing, 27(5), 505-516. doi:10.3139/217.2647
Najafi, N., Heuzey, M. C., & Carreau, P. J. (2012). Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender. Composites Science and Technology, 72(5), 608-615. doi:10.1016/j.compscitech.2012.01.005
Zhang, J.-F., & Sun, X. (2004). Mechanical Properties of Poly(lactic acid)/Starch Composites Compatibilized by Maleic Anhydride. Biomacromolecules, 5(4), 1446-1451. doi:10.1021/bm0400022
Orozco, V. H., Brostow, W., Chonkaew, W., & López, B. L. (2009). Preparation and Characterization of Poly(Lactic Acid)-g-Maleic Anhydride + Starch Blends. Macromolecular Symposia, 277(1), 69-80. doi:10.1002/masy.200950309
Xiong, Z., Zhang, L., Ma, S., Yang, Y., Zhang, C., Tang, Z., & Zhu, J. (2013). Effect of castor oil enrichment layer produced by reaction on the properties of PLA/HDI-g-starch blends. Carbohydrate Polymers, 94(1), 235-243. doi:10.1016/j.carbpol.2013.01.038
Mamun, A. A., Heim, H.-P., Beg, D. H., Kim, T. S., & Ahmad, S. H. (2013). PLA and PP composites with enzyme modified oil palm fibre: A comparative study. Composites Part A: Applied Science and Manufacturing, 53, 160-167. doi:10.1016/j.compositesa.2013.06.010
García-García, D., Carbonell, A., Samper, M. D., García-Sanoguera, D., & Balart, R. (2015). Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering, 78, 256-265. doi:10.1016/j.compositesb.2015.03.080
Garcia-Garcia, D., Fenollar, O., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2016). Improvement of Mechanical Ductile Properties of Poly(3-hydroxybutyrate) by Using Vegetable Oil Derivatives. Macromolecular Materials and Engineering, 302(2), 1600330. doi:10.1002/mame.201600330
Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039
Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031
Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062
Xiong, Z., Yang, Y., Feng, J., Zhang, X., Zhang, C., Tang, Z., & Zhu, J. (2013). Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil. Carbohydrate Polymers, 92(1), 810-816. doi:10.1016/j.carbpol.2012.09.007
Mauck, S. C., Wang, S., Ding, W., Rohde, B. J., Fortune, C. K., Yang, G., … Robertson, M. L. (2016). Biorenewable Tough Blends of Polylactide and Acrylated Epoxidized Soybean Oil Compatibilized by a Polylactide Star Polymer. Macromolecules, 49(5), 1605-1615. doi:10.1021/acs.macromol.5b02613
Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208
Crespo, J. E., Balart, R., Sanchez, L., & Lopez, J. (2007). Mechanical behaviour of vinyl plastisols with cellulosic fillers. Analysis of the interface between particles and matrices. International Journal of Adhesion and Adhesives, 27(5), 422-428. doi:10.1016/j.ijadhadh.2006.09.013
Crespo, J. E., Sanchez, L., Parres, F., & López, J. (2007). Mechanical and morphological characterization of PVC plastisol composites with almond husk fillers. Polymer Composites, 28(1), 71-77. doi:10.1002/pc.20256
Arrieta, M. P., Samper, M. D., López, J., & Jiménez, A. (2014). Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. Journal of Polymers and the Environment, 22(4), 460-470. doi:10.1007/s10924-014-0654-y
Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024
Kulinski, Z., Piorkowska, E., Gadzinowska, K., & Stasiak, M. (2006). Plasticization of Poly(l-lactide) with Poly(propylene glycol). Biomacromolecules, 7(7), 2128-2135. doi:10.1021/bm060089m
Kowalczyk, M., Pluta, M., Piorkowska, E., & Krasnikova, N. (2012). Plasticization of polylactide with block copolymers of ethylene glycol and propylene glycol. Journal of Applied Polymer Science, 125(6), 4292-4301. doi:10.1002/app.36563
Arrieta, M. P., Castro-López, M. del M., Rayón, E., Barral-Losada, L. F., López-Vilariño, J. M., López, J., & González-Rodríguez, M. V. (2014). Plasticized Poly(lactic acid)–Poly(hydroxybutyrate) (PLA–PHB) Blends Incorporated with Catechin Intended for Active Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 62(41), 10170-10180. doi:10.1021/jf5029812
Burgos, N., Martino, V. P., & Jiménez, A. (2013). Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651-658. doi:10.1016/j.polymdegradstab.2012.11.009
Chun, K. S., Husseinsyah, S., & Osman, H. (2012). Mechanical and thermal properties of coconut shell powder filled polylactic acid biocomposites: effects of the filler content and silane coupling agent. Journal of Polymer Research, 19(5). doi:10.1007/s10965-012-9859-8
Lee, S.-H., & Wang, S. (2006). Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A: Applied Science and Manufacturing, 37(1), 80-91. doi:10.1016/j.compositesa.2005.04.015
Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063
Choi, K.-M., Lim, S.-W., Choi, M.-C., Kim, Y.-M., Han, D.-H., & Ha, C.-S. (2014). Thermal and mechanical properties of poly(lactic acid) modified by poly(ethylene glycol) acrylate through reactive blending. Polymer Bulletin, 71(12), 3305-3321. doi:10.1007/s00289-014-1251-x
Delgado, P. S., Lana, S. L. B., Ayres, E., Patrício, P. O. S., & Oréfice, R. L. (2012). The potential of bamboo in the design of polymer composites. Materials Research, 15(4), 639-644. doi:10.1590/s1516-14392012005000073
Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329
Villalobos, M., Awojulu, A., Greeley, T., Turco, G., & Deeter, G. (2006). Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics. Energy, 31(15), 3227-3234. doi:10.1016/j.energy.2006.03.026
Al-Itry, R., Lamnawar, K., & Maazouz, A. (2012). Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability, 97(10), 1898-1914. doi:10.1016/j.polymdegradstab.2012.06.028
Kumar, R., Yakubu, M. K., & Anandjiwala, R. D. (2010). Biodegradation of flax fiber reinforced poly lactic acid. Express Polymer Letters, 4(7), 423-430. doi:10.3144/expresspolymlett.2010.53
Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97(5), 2014-2025. doi:10.1002/app.21779
[-]