- -

On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour

Mostrar el registro completo del ítem

Quiles-Carrillo, L.; Montanes, N.; Lagaron, JM.; Balart, R.; Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International. 67(10):1341-1351. https://doi.org/10.1002/pi.5588

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/141302

Ficheros en el ítem

Metadatos del ítem

Título: On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour
Autor: Quiles-Carrillo, Luis Montanes, Nestor Lagaron, Jose Maria Balart, Rafael Torres-Giner, Sergio
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Fecha difusión:
Resumen:
[EN] In the present study, novel green composites made of polylactide (PLA) and orange peel flour (OPF) were melt compounded by twin¿screw extrusion (TSE) and shaped into pieces by injection molding. Orange peel, a large ...[+]
Palabras clave: PLA , Green composites , Multi-functionalized vegetable oils , Reactive extrusion , Waste valorization
Derechos de uso: Reserva de todos los derechos
Fuente:
Polymer International. (issn: 0959-8103 )
DOI: 10.1002/pi.5588
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/pi.5588
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2014-59242-C2-1-R/ES/TECNICAS AVANZADAS DE PROCESADO PARA SISTEMAS ACTIVOS ENCAPSULADOS/
info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/
info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/
info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/
Agradecimientos:
This research was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) program numbers MAT2014-59242-C2-1-R and AGL2015-63855-C2-1-R. LQ-C also thanks the Spanish Ministry of Education, Culture, and ...[+]
Tipo: Artículo

References

Quiles-Carrillo, L., Montanes, N., Boronat, T., Balart, R., & Torres-Giner, S. (2017). Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion. Polymer Testing, 61, 421-429. doi:10.1016/j.polymertesting.2017.06.004

Chiellini, E., Cinelli, P., Chiellini, F., & Imam, S. H. (2004). Environmentally Degradable Bio-Based Polymeric Blends and Composites. Macromolecular Bioscience, 4(3), 218-231. doi:10.1002/mabi.200300126

Majhi, S. K., Nayak, S. K., Mohanty, S., & Unnikrishnan, L. (2010). Mechanical and fracture behavior of banana fiber reinforced Polylactic acid biocomposites. International Journal of Plastics Technology, 14(S1), 57-75. doi:10.1007/s12588-010-0010-6 [+]
Quiles-Carrillo, L., Montanes, N., Boronat, T., Balart, R., & Torres-Giner, S. (2017). Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion. Polymer Testing, 61, 421-429. doi:10.1016/j.polymertesting.2017.06.004

Chiellini, E., Cinelli, P., Chiellini, F., & Imam, S. H. (2004). Environmentally Degradable Bio-Based Polymeric Blends and Composites. Macromolecular Bioscience, 4(3), 218-231. doi:10.1002/mabi.200300126

Majhi, S. K., Nayak, S. K., Mohanty, S., & Unnikrishnan, L. (2010). Mechanical and fracture behavior of banana fiber reinforced Polylactic acid biocomposites. International Journal of Plastics Technology, 14(S1), 57-75. doi:10.1007/s12588-010-0010-6

Thakur, V. K., Thakur, M. K., Raghavan, P., & Kessler, M. R. (2014). Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. ACS Sustainable Chemistry & Engineering, 2(5), 1072-1092. doi:10.1021/sc500087z

Yang, H.-S., Kim, H.-J., Son, J., Park, H.-J., Lee, B.-J., & Hwang, T.-S. (2004). Rice-husk flour filled polypropylene composites; mechanical and morphological study. Composite Structures, 63(3-4), 305-312. doi:10.1016/s0263-8223(03)00179-x

Cheng, S., Lau, K., Liu, T., Zhao, Y., Lam, P.-M., & Yin, Y. (2009). Mechanical and thermal properties of chicken feather fiber/PLA green composites. Composites Part B: Engineering, 40(7), 650-654. doi:10.1016/j.compositesb.2009.04.011

Huda, M. S., Mohanty, A. K., Drzal, L. T., Schut, E., & Misra, M. (2005). «Green» composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation. Journal of Materials Science, 40(16), 4221-4229. doi:10.1007/s10853-005-1998-4

Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092

Koronis, G., Silva, A., & Fontul, M. (2013). Green composites: A review of adequate materials for automotive applications. Composites Part B: Engineering, 44(1), 120-127. doi:10.1016/j.compositesb.2012.07.004

Dicker, M. P. M., Duckworth, P. F., Baker, A. B., Francois, G., Hazzard, M. K., & Weaver, P. M. (2014). Green composites: A review of material attributes and complementary applications. Composites Part A: Applied Science and Manufacturing, 56, 280-289. doi:10.1016/j.compositesa.2013.10.014

Bajpai, P. K., Singh, I., & Madaan, J. (2012). Development and characterization of PLA-based green composites. Journal of Thermoplastic Composite Materials, 27(1), 52-81. doi:10.1177/0892705712439571

Zini, E., & Scandola, M. (2011). Green composites: An overview. Polymer Composites, 32(12), 1905-1915. doi:10.1002/pc.21224

Laka, M. (2003). Mechanics of Composite Materials, 39(2), 183-188. doi:10.1023/a:1023469614577

Abdul Khalil, H. P. S., Bhat, A. H., & Ireana Yusra, A. F. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87(2), 963-979. doi:10.1016/j.carbpol.2011.08.078

Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037

Ndazi, B. S., & Karlsson, S. (2011). Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polymer Letters, 5(2), 119-131. doi:10.3144/expresspolymlett.2011.13

Yussuf, A. A., Massoumi, I., & Hassan, A. (2010). Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. Journal of Polymers and the Environment, 18(3), 422-429. doi:10.1007/s10924-010-0185-0

NISHIKAWA, Y., NAGASE, N., & FUKUSHIMA, K. (2009). Application of Peanut Hulls as Filler for Plastics. Journal of Environment and Engineering, 4(1), 124-134. doi:10.1299/jee.4.124

Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940

Sanchez-Vazquez, S. A., Hailes, H. C., & Evans, J. R. G. (2013). Hydrophobic Polymers from Food Waste: Resources and Synthesis. Polymer Reviews, 53(4), 627-694. doi:10.1080/15583724.2013.834933

Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042

Coltro, L., Mourad, A. L., Kletecke, R. M., Mendonça, T. A., & Germer, S. P. M. (2009). Assessing the environmental profile of orange production in Brazil. The International Journal of Life Cycle Assessment, 14(7), 656-664. doi:10.1007/s11367-009-0097-1

Rezzadori, K., Benedetti, S., & Amante, E. R. (2012). Proposals for the residues recovery: Orange waste as raw material for new products. Food and Bioproducts Processing, 90(4), 606-614. doi:10.1016/j.fbp.2012.06.002

Borah, J. S., & Kim, D. S. (2016). Recent development in thermoplastic/wood composites and nanocomposites: A review. Korean Journal of Chemical Engineering, 33(11), 3035-3049. doi:10.1007/s11814-016-0183-6

Yang, H.-S., Kim, H.-J., Park, H.-J., Lee, B.-J., & Hwang, T.-S. (2006). Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Composite Structures, 72(4), 429-437. doi:10.1016/j.compstruct.2005.01.013

Raquez, J.-M., Degée, P., Nabar, Y., Narayan, R., & Dubois, P. (2006). Biodegradable materials by reactive extrusion: from catalyzed polymerization to functionalization and blend compatibilization. Comptes Rendus Chimie, 9(11-12), 1370-1379. doi:10.1016/j.crci.2006.09.004

Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057

Meng, Q.-K., Heuzey, M.-C., & Carreau, P. J. (2012). Effects of a Multifunctional Polymeric Chain Extender on the Properties of Polylactide and Polylactide/Clay Nanocomposites. International Polymer Processing, 27(5), 505-516. doi:10.3139/217.2647

Najafi, N., Heuzey, M. C., & Carreau, P. J. (2012). Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender. Composites Science and Technology, 72(5), 608-615. doi:10.1016/j.compscitech.2012.01.005

Zhang, J.-F., & Sun, X. (2004). Mechanical Properties of Poly(lactic acid)/Starch Composites Compatibilized by Maleic Anhydride. Biomacromolecules, 5(4), 1446-1451. doi:10.1021/bm0400022

Orozco, V. H., Brostow, W., Chonkaew, W., & López, B. L. (2009). Preparation and Characterization of Poly(Lactic Acid)-g-Maleic Anhydride + Starch Blends. Macromolecular Symposia, 277(1), 69-80. doi:10.1002/masy.200950309

Xiong, Z., Zhang, L., Ma, S., Yang, Y., Zhang, C., Tang, Z., & Zhu, J. (2013). Effect of castor oil enrichment layer produced by reaction on the properties of PLA/HDI-g-starch blends. Carbohydrate Polymers, 94(1), 235-243. doi:10.1016/j.carbpol.2013.01.038

Mamun, A. A., Heim, H.-P., Beg, D. H., Kim, T. S., & Ahmad, S. H. (2013). PLA and PP composites with enzyme modified oil palm fibre: A comparative study. Composites Part A: Applied Science and Manufacturing, 53, 160-167. doi:10.1016/j.compositesa.2013.06.010

García-García, D., Carbonell, A., Samper, M. D., García-Sanoguera, D., & Balart, R. (2015). Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering, 78, 256-265. doi:10.1016/j.compositesb.2015.03.080

Garcia-Garcia, D., Fenollar, O., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2016). Improvement of Mechanical Ductile Properties of Poly(3-hydroxybutyrate) by Using Vegetable Oil Derivatives. Macromolecular Materials and Engineering, 302(2), 1600330. doi:10.1002/mame.201600330

Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039

Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031

Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062

Xiong, Z., Yang, Y., Feng, J., Zhang, X., Zhang, C., Tang, Z., & Zhu, J. (2013). Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil. Carbohydrate Polymers, 92(1), 810-816. doi:10.1016/j.carbpol.2012.09.007

Mauck, S. C., Wang, S., Ding, W., Rohde, B. J., Fortune, C. K., Yang, G., … Robertson, M. L. (2016). Biorenewable Tough Blends of Polylactide and Acrylated Epoxidized Soybean Oil Compatibilized by a Polylactide Star Polymer. Macromolecules, 49(5), 1605-1615. doi:10.1021/acs.macromol.5b02613

Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208

Crespo, J. E., Balart, R., Sanchez, L., & Lopez, J. (2007). Mechanical behaviour of vinyl plastisols with cellulosic fillers. Analysis of the interface between particles and matrices. International Journal of Adhesion and Adhesives, 27(5), 422-428. doi:10.1016/j.ijadhadh.2006.09.013

Crespo, J. E., Sanchez, L., Parres, F., & López, J. (2007). Mechanical and morphological characterization of PVC plastisol composites with almond husk fillers. Polymer Composites, 28(1), 71-77. doi:10.1002/pc.20256

Arrieta, M. P., Samper, M. D., López, J., & Jiménez, A. (2014). Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. Journal of Polymers and the Environment, 22(4), 460-470. doi:10.1007/s10924-014-0654-y

Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024

Kulinski, Z., Piorkowska, E., Gadzinowska, K., & Stasiak, M. (2006). Plasticization of Poly(l-lactide) with Poly(propylene glycol). Biomacromolecules, 7(7), 2128-2135. doi:10.1021/bm060089m

Kowalczyk, M., Pluta, M., Piorkowska, E., & Krasnikova, N. (2012). Plasticization of polylactide with block copolymers of ethylene glycol and propylene glycol. Journal of Applied Polymer Science, 125(6), 4292-4301. doi:10.1002/app.36563

Arrieta, M. P., Castro-López, M. del M., Rayón, E., Barral-Losada, L. F., López-Vilariño, J. M., López, J., & González-Rodríguez, M. V. (2014). Plasticized Poly(lactic acid)–Poly(hydroxybutyrate) (PLA–PHB) Blends Incorporated with Catechin Intended for Active Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 62(41), 10170-10180. doi:10.1021/jf5029812

Burgos, N., Martino, V. P., & Jiménez, A. (2013). Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651-658. doi:10.1016/j.polymdegradstab.2012.11.009

Chun, K. S., Husseinsyah, S., & Osman, H. (2012). Mechanical and thermal properties of coconut shell powder filled polylactic acid biocomposites: effects of the filler content and silane coupling agent. Journal of Polymer Research, 19(5). doi:10.1007/s10965-012-9859-8

Lee, S.-H., & Wang, S. (2006). Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A: Applied Science and Manufacturing, 37(1), 80-91. doi:10.1016/j.compositesa.2005.04.015

Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063

Choi, K.-M., Lim, S.-W., Choi, M.-C., Kim, Y.-M., Han, D.-H., & Ha, C.-S. (2014). Thermal and mechanical properties of poly(lactic acid) modified by poly(ethylene glycol) acrylate through reactive blending. Polymer Bulletin, 71(12), 3305-3321. doi:10.1007/s00289-014-1251-x

Delgado, P. S., Lana, S. L. B., Ayres, E., Patrício, P. O. S., & Oréfice, R. L. (2012). The potential of bamboo in the design of polymer composites. Materials Research, 15(4), 639-644. doi:10.1590/s1516-14392012005000073

Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329

Villalobos, M., Awojulu, A., Greeley, T., Turco, G., & Deeter, G. (2006). Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics. Energy, 31(15), 3227-3234. doi:10.1016/j.energy.2006.03.026

Al-Itry, R., Lamnawar, K., & Maazouz, A. (2012). Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability, 97(10), 1898-1914. doi:10.1016/j.polymdegradstab.2012.06.028

Kumar, R., Yakubu, M. K., & Anandjiwala, R. D. (2010). Biodegradation of flax fiber reinforced poly lactic acid. Express Polymer Letters, 4(7), 423-430. doi:10.3144/expresspolymlett.2010.53

Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97(5), 2014-2025. doi:10.1002/app.21779

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem