Mostrar el registro sencillo del ítem
dc.contributor.author | Quiles-Carrillo, Luis | es_ES |
dc.contributor.author | Montanes, Nestor | es_ES |
dc.contributor.author | Lagaron, Jose Maria | es_ES |
dc.contributor.author | Balart, Rafael | es_ES |
dc.contributor.author | Torres-Giner, Sergio | es_ES |
dc.date.accessioned | 2020-04-22T08:01:26Z | |
dc.date.available | 2020-04-22T08:01:26Z | |
dc.date.issued | 2018-10 | es_ES |
dc.identifier.issn | 0959-8103 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/141302 | |
dc.description.abstract | [EN] In the present study, novel green composites made of polylactide (PLA) and orange peel flour (OPF) were melt compounded by twin¿screw extrusion (TSE) and shaped into pieces by injection molding. Orange peel, a large by¿product of the juice industry, was first grounded to flour and then incorporated as a lignocellulosic filler into the biopolymer at 10, 20, and 30 wt.¿%. Since both components of the green composite presented low compatibility, the resultant injection¿molded pieces showed poor ductility and impaired thermomechanical performance. As a new bio¿based reactive compatibilizer, acrylated epoxidized soybean oil (AESO) was added at 5 parts per hundred resin (phr) to the PLA/OPF formulations during the extrusion process. The addition of AESO increased the filler¿biopolymer adhesion and led to compostable green composite pieces with improved physical properties. The enhancement achieved was related to a dual effect of plasticization and melt grafting of the OPF particles onto the PLA chains provided by the multiple acrylate and epoxy groups present in AESO. The use of multi¿functionalized vegetable oils to improve the performance of green composites certainly opens up new opportunities for the expansion of fully bio¿based and biodegradable materials that are partially obtained from agro¿food waste. | es_ES |
dc.description.sponsorship | This research was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) program numbers MAT2014-59242-C2-1-R and AGL2015-63855-C2-1-R. LQ-C also thanks the Spanish Ministry of Education, Culture, and Sports (MECD) for financial support through FPU grant number FPU15/03812. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Polymer International | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | PLA | es_ES |
dc.subject | Green composites | es_ES |
dc.subject | Multi-functionalized vegetable oils | es_ES |
dc.subject | Reactive extrusion | es_ES |
dc.subject | Waste valorization | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/pi.5588 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2014-59242-C2-1-R/ES/TECNICAS AVANZADAS DE PROCESADO PARA SISTEMAS ACTIVOS ENCAPSULADOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.description.bibliographicCitation | Quiles-Carrillo, L.; Montanes, N.; Lagaron, JM.; Balart, R.; Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International. 67(10):1341-1351. https://doi.org/10.1002/pi.5588 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/pi.5588 | es_ES |
dc.description.upvformatpinicio | 1341 | es_ES |
dc.description.upvformatpfin | 1351 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 67 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.pasarela | S\360876 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Quiles-Carrillo, L., Montanes, N., Boronat, T., Balart, R., & Torres-Giner, S. (2017). Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion. Polymer Testing, 61, 421-429. doi:10.1016/j.polymertesting.2017.06.004 | es_ES |
dc.description.references | Chiellini, E., Cinelli, P., Chiellini, F., & Imam, S. H. (2004). Environmentally Degradable Bio-Based Polymeric Blends and Composites. Macromolecular Bioscience, 4(3), 218-231. doi:10.1002/mabi.200300126 | es_ES |
dc.description.references | Majhi, S. K., Nayak, S. K., Mohanty, S., & Unnikrishnan, L. (2010). Mechanical and fracture behavior of banana fiber reinforced Polylactic acid biocomposites. International Journal of Plastics Technology, 14(S1), 57-75. doi:10.1007/s12588-010-0010-6 | es_ES |
dc.description.references | Thakur, V. K., Thakur, M. K., Raghavan, P., & Kessler, M. R. (2014). Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. ACS Sustainable Chemistry & Engineering, 2(5), 1072-1092. doi:10.1021/sc500087z | es_ES |
dc.description.references | Yang, H.-S., Kim, H.-J., Son, J., Park, H.-J., Lee, B.-J., & Hwang, T.-S. (2004). Rice-husk flour filled polypropylene composites; mechanical and morphological study. Composite Structures, 63(3-4), 305-312. doi:10.1016/s0263-8223(03)00179-x | es_ES |
dc.description.references | Cheng, S., Lau, K., Liu, T., Zhao, Y., Lam, P.-M., & Yin, Y. (2009). Mechanical and thermal properties of chicken feather fiber/PLA green composites. Composites Part B: Engineering, 40(7), 650-654. doi:10.1016/j.compositesb.2009.04.011 | es_ES |
dc.description.references | Huda, M. S., Mohanty, A. K., Drzal, L. T., Schut, E., & Misra, M. (2005). «Green» composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation. Journal of Materials Science, 40(16), 4221-4229. doi:10.1007/s10853-005-1998-4 | es_ES |
dc.description.references | Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092 | es_ES |
dc.description.references | Koronis, G., Silva, A., & Fontul, M. (2013). Green composites: A review of adequate materials for automotive applications. Composites Part B: Engineering, 44(1), 120-127. doi:10.1016/j.compositesb.2012.07.004 | es_ES |
dc.description.references | Dicker, M. P. M., Duckworth, P. F., Baker, A. B., Francois, G., Hazzard, M. K., & Weaver, P. M. (2014). Green composites: A review of material attributes and complementary applications. Composites Part A: Applied Science and Manufacturing, 56, 280-289. doi:10.1016/j.compositesa.2013.10.014 | es_ES |
dc.description.references | Bajpai, P. K., Singh, I., & Madaan, J. (2012). Development and characterization of PLA-based green composites. Journal of Thermoplastic Composite Materials, 27(1), 52-81. doi:10.1177/0892705712439571 | es_ES |
dc.description.references | Zini, E., & Scandola, M. (2011). Green composites: An overview. Polymer Composites, 32(12), 1905-1915. doi:10.1002/pc.21224 | es_ES |
dc.description.references | Laka, M. (2003). Mechanics of Composite Materials, 39(2), 183-188. doi:10.1023/a:1023469614577 | es_ES |
dc.description.references | Abdul Khalil, H. P. S., Bhat, A. H., & Ireana Yusra, A. F. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87(2), 963-979. doi:10.1016/j.carbpol.2011.08.078 | es_ES |
dc.description.references | Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037 | es_ES |
dc.description.references | Ndazi, B. S., & Karlsson, S. (2011). Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polymer Letters, 5(2), 119-131. doi:10.3144/expresspolymlett.2011.13 | es_ES |
dc.description.references | Yussuf, A. A., Massoumi, I., & Hassan, A. (2010). Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. Journal of Polymers and the Environment, 18(3), 422-429. doi:10.1007/s10924-010-0185-0 | es_ES |
dc.description.references | NISHIKAWA, Y., NAGASE, N., & FUKUSHIMA, K. (2009). Application of Peanut Hulls as Filler for Plastics. Journal of Environment and Engineering, 4(1), 124-134. doi:10.1299/jee.4.124 | es_ES |
dc.description.references | Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940 | es_ES |
dc.description.references | Sanchez-Vazquez, S. A., Hailes, H. C., & Evans, J. R. G. (2013). Hydrophobic Polymers from Food Waste: Resources and Synthesis. Polymer Reviews, 53(4), 627-694. doi:10.1080/15583724.2013.834933 | es_ES |
dc.description.references | Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042 | es_ES |
dc.description.references | Coltro, L., Mourad, A. L., Kletecke, R. M., Mendonça, T. A., & Germer, S. P. M. (2009). Assessing the environmental profile of orange production in Brazil. The International Journal of Life Cycle Assessment, 14(7), 656-664. doi:10.1007/s11367-009-0097-1 | es_ES |
dc.description.references | Rezzadori, K., Benedetti, S., & Amante, E. R. (2012). Proposals for the residues recovery: Orange waste as raw material for new products. Food and Bioproducts Processing, 90(4), 606-614. doi:10.1016/j.fbp.2012.06.002 | es_ES |
dc.description.references | Borah, J. S., & Kim, D. S. (2016). Recent development in thermoplastic/wood composites and nanocomposites: A review. Korean Journal of Chemical Engineering, 33(11), 3035-3049. doi:10.1007/s11814-016-0183-6 | es_ES |
dc.description.references | Yang, H.-S., Kim, H.-J., Park, H.-J., Lee, B.-J., & Hwang, T.-S. (2006). Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Composite Structures, 72(4), 429-437. doi:10.1016/j.compstruct.2005.01.013 | es_ES |
dc.description.references | Raquez, J.-M., Degée, P., Nabar, Y., Narayan, R., & Dubois, P. (2006). Biodegradable materials by reactive extrusion: from catalyzed polymerization to functionalization and blend compatibilization. Comptes Rendus Chimie, 9(11-12), 1370-1379. doi:10.1016/j.crci.2006.09.004 | es_ES |
dc.description.references | Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057 | es_ES |
dc.description.references | Meng, Q.-K., Heuzey, M.-C., & Carreau, P. J. (2012). Effects of a Multifunctional Polymeric Chain Extender on the Properties of Polylactide and Polylactide/Clay Nanocomposites. International Polymer Processing, 27(5), 505-516. doi:10.3139/217.2647 | es_ES |
dc.description.references | Najafi, N., Heuzey, M. C., & Carreau, P. J. (2012). Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender. Composites Science and Technology, 72(5), 608-615. doi:10.1016/j.compscitech.2012.01.005 | es_ES |
dc.description.references | Zhang, J.-F., & Sun, X. (2004). Mechanical Properties of Poly(lactic acid)/Starch Composites Compatibilized by Maleic Anhydride. Biomacromolecules, 5(4), 1446-1451. doi:10.1021/bm0400022 | es_ES |
dc.description.references | Orozco, V. H., Brostow, W., Chonkaew, W., & López, B. L. (2009). Preparation and Characterization of Poly(Lactic Acid)-g-Maleic Anhydride + Starch Blends. Macromolecular Symposia, 277(1), 69-80. doi:10.1002/masy.200950309 | es_ES |
dc.description.references | Xiong, Z., Zhang, L., Ma, S., Yang, Y., Zhang, C., Tang, Z., & Zhu, J. (2013). Effect of castor oil enrichment layer produced by reaction on the properties of PLA/HDI-g-starch blends. Carbohydrate Polymers, 94(1), 235-243. doi:10.1016/j.carbpol.2013.01.038 | es_ES |
dc.description.references | Mamun, A. A., Heim, H.-P., Beg, D. H., Kim, T. S., & Ahmad, S. H. (2013). PLA and PP composites with enzyme modified oil palm fibre: A comparative study. Composites Part A: Applied Science and Manufacturing, 53, 160-167. doi:10.1016/j.compositesa.2013.06.010 | es_ES |
dc.description.references | García-García, D., Carbonell, A., Samper, M. D., García-Sanoguera, D., & Balart, R. (2015). Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering, 78, 256-265. doi:10.1016/j.compositesb.2015.03.080 | es_ES |
dc.description.references | Garcia-Garcia, D., Fenollar, O., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2016). Improvement of Mechanical Ductile Properties of Poly(3-hydroxybutyrate) by Using Vegetable Oil Derivatives. Macromolecular Materials and Engineering, 302(2), 1600330. doi:10.1002/mame.201600330 | es_ES |
dc.description.references | Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039 | es_ES |
dc.description.references | Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031 | es_ES |
dc.description.references | Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062 | es_ES |
dc.description.references | Xiong, Z., Yang, Y., Feng, J., Zhang, X., Zhang, C., Tang, Z., & Zhu, J. (2013). Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil. Carbohydrate Polymers, 92(1), 810-816. doi:10.1016/j.carbpol.2012.09.007 | es_ES |
dc.description.references | Mauck, S. C., Wang, S., Ding, W., Rohde, B. J., Fortune, C. K., Yang, G., … Robertson, M. L. (2016). Biorenewable Tough Blends of Polylactide and Acrylated Epoxidized Soybean Oil Compatibilized by a Polylactide Star Polymer. Macromolecules, 49(5), 1605-1615. doi:10.1021/acs.macromol.5b02613 | es_ES |
dc.description.references | Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208 | es_ES |
dc.description.references | Crespo, J. E., Balart, R., Sanchez, L., & Lopez, J. (2007). Mechanical behaviour of vinyl plastisols with cellulosic fillers. Analysis of the interface between particles and matrices. International Journal of Adhesion and Adhesives, 27(5), 422-428. doi:10.1016/j.ijadhadh.2006.09.013 | es_ES |
dc.description.references | Crespo, J. E., Sanchez, L., Parres, F., & López, J. (2007). Mechanical and morphological characterization of PVC plastisol composites with almond husk fillers. Polymer Composites, 28(1), 71-77. doi:10.1002/pc.20256 | es_ES |
dc.description.references | Arrieta, M. P., Samper, M. D., López, J., & Jiménez, A. (2014). Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. Journal of Polymers and the Environment, 22(4), 460-470. doi:10.1007/s10924-014-0654-y | es_ES |
dc.description.references | Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024 | es_ES |
dc.description.references | Kulinski, Z., Piorkowska, E., Gadzinowska, K., & Stasiak, M. (2006). Plasticization of Poly(l-lactide) with Poly(propylene glycol). Biomacromolecules, 7(7), 2128-2135. doi:10.1021/bm060089m | es_ES |
dc.description.references | Kowalczyk, M., Pluta, M., Piorkowska, E., & Krasnikova, N. (2012). Plasticization of polylactide with block copolymers of ethylene glycol and propylene glycol. Journal of Applied Polymer Science, 125(6), 4292-4301. doi:10.1002/app.36563 | es_ES |
dc.description.references | Arrieta, M. P., Castro-López, M. del M., Rayón, E., Barral-Losada, L. F., López-Vilariño, J. M., López, J., & González-Rodríguez, M. V. (2014). Plasticized Poly(lactic acid)–Poly(hydroxybutyrate) (PLA–PHB) Blends Incorporated with Catechin Intended for Active Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 62(41), 10170-10180. doi:10.1021/jf5029812 | es_ES |
dc.description.references | Burgos, N., Martino, V. P., & Jiménez, A. (2013). Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651-658. doi:10.1016/j.polymdegradstab.2012.11.009 | es_ES |
dc.description.references | Chun, K. S., Husseinsyah, S., & Osman, H. (2012). Mechanical and thermal properties of coconut shell powder filled polylactic acid biocomposites: effects of the filler content and silane coupling agent. Journal of Polymer Research, 19(5). doi:10.1007/s10965-012-9859-8 | es_ES |
dc.description.references | Lee, S.-H., & Wang, S. (2006). Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A: Applied Science and Manufacturing, 37(1), 80-91. doi:10.1016/j.compositesa.2005.04.015 | es_ES |
dc.description.references | Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063 | es_ES |
dc.description.references | Choi, K.-M., Lim, S.-W., Choi, M.-C., Kim, Y.-M., Han, D.-H., & Ha, C.-S. (2014). Thermal and mechanical properties of poly(lactic acid) modified by poly(ethylene glycol) acrylate through reactive blending. Polymer Bulletin, 71(12), 3305-3321. doi:10.1007/s00289-014-1251-x | es_ES |
dc.description.references | Delgado, P. S., Lana, S. L. B., Ayres, E., Patrício, P. O. S., & Oréfice, R. L. (2012). The potential of bamboo in the design of polymer composites. Materials Research, 15(4), 639-644. doi:10.1590/s1516-14392012005000073 | es_ES |
dc.description.references | Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329 | es_ES |
dc.description.references | Villalobos, M., Awojulu, A., Greeley, T., Turco, G., & Deeter, G. (2006). Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics. Energy, 31(15), 3227-3234. doi:10.1016/j.energy.2006.03.026 | es_ES |
dc.description.references | Al-Itry, R., Lamnawar, K., & Maazouz, A. (2012). Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability, 97(10), 1898-1914. doi:10.1016/j.polymdegradstab.2012.06.028 | es_ES |
dc.description.references | Kumar, R., Yakubu, M. K., & Anandjiwala, R. D. (2010). Biodegradation of flax fiber reinforced poly lactic acid. Express Polymer Letters, 4(7), 423-430. doi:10.3144/expresspolymlett.2010.53 | es_ES |
dc.description.references | Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97(5), 2014-2025. doi:10.1002/app.21779 | es_ES |