- -

On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Quiles-Carrillo, Luis es_ES
dc.contributor.author Montanes, Nestor es_ES
dc.contributor.author Lagaron, Jose Maria es_ES
dc.contributor.author Balart, Rafael es_ES
dc.contributor.author Torres-Giner, Sergio es_ES
dc.date.accessioned 2020-04-22T08:01:26Z
dc.date.available 2020-04-22T08:01:26Z
dc.date.issued 2018-10 es_ES
dc.identifier.issn 0959-8103 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141302
dc.description.abstract [EN] In the present study, novel green composites made of polylactide (PLA) and orange peel flour (OPF) were melt compounded by twin¿screw extrusion (TSE) and shaped into pieces by injection molding. Orange peel, a large by¿product of the juice industry, was first grounded to flour and then incorporated as a lignocellulosic filler into the biopolymer at 10, 20, and 30 wt.¿%. Since both components of the green composite presented low compatibility, the resultant injection¿molded pieces showed poor ductility and impaired thermomechanical performance. As a new bio¿based reactive compatibilizer, acrylated epoxidized soybean oil (AESO) was added at 5 parts per hundred resin (phr) to the PLA/OPF formulations during the extrusion process. The addition of AESO increased the filler¿biopolymer adhesion and led to compostable green composite pieces with improved physical properties. The enhancement achieved was related to a dual effect of plasticization and melt grafting of the OPF particles onto the PLA chains provided by the multiple acrylate and epoxy groups present in AESO. The use of multi¿functionalized vegetable oils to improve the performance of green composites certainly opens up new opportunities for the expansion of fully bio¿based and biodegradable materials that are partially obtained from agro¿food waste. es_ES
dc.description.sponsorship This research was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) program numbers MAT2014-59242-C2-1-R and AGL2015-63855-C2-1-R. LQ-C also thanks the Spanish Ministry of Education, Culture, and Sports (MECD) for financial support through FPU grant number FPU15/03812. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Polymer International es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject PLA es_ES
dc.subject Green composites es_ES
dc.subject Multi-functionalized vegetable oils es_ES
dc.subject Reactive extrusion es_ES
dc.subject Waste valorization es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/pi.5588 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2014-59242-C2-1-R/ES/TECNICAS AVANZADAS DE PROCESADO PARA SISTEMAS ACTIVOS ENCAPSULADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Quiles-Carrillo, L.; Montanes, N.; Lagaron, JM.; Balart, R.; Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International. 67(10):1341-1351. https://doi.org/10.1002/pi.5588 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/pi.5588 es_ES
dc.description.upvformatpinicio 1341 es_ES
dc.description.upvformatpfin 1351 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 67 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\360876 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Boronat, T., Balart, R., & Torres-Giner, S. (2017). Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion. Polymer Testing, 61, 421-429. doi:10.1016/j.polymertesting.2017.06.004 es_ES
dc.description.references Chiellini, E., Cinelli, P., Chiellini, F., & Imam, S. H. (2004). Environmentally Degradable Bio-Based Polymeric Blends and Composites. Macromolecular Bioscience, 4(3), 218-231. doi:10.1002/mabi.200300126 es_ES
dc.description.references Majhi, S. K., Nayak, S. K., Mohanty, S., & Unnikrishnan, L. (2010). Mechanical and fracture behavior of banana fiber reinforced Polylactic acid biocomposites. International Journal of Plastics Technology, 14(S1), 57-75. doi:10.1007/s12588-010-0010-6 es_ES
dc.description.references Thakur, V. K., Thakur, M. K., Raghavan, P., & Kessler, M. R. (2014). Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. ACS Sustainable Chemistry & Engineering, 2(5), 1072-1092. doi:10.1021/sc500087z es_ES
dc.description.references Yang, H.-S., Kim, H.-J., Son, J., Park, H.-J., Lee, B.-J., & Hwang, T.-S. (2004). Rice-husk flour filled polypropylene composites; mechanical and morphological study. Composite Structures, 63(3-4), 305-312. doi:10.1016/s0263-8223(03)00179-x es_ES
dc.description.references Cheng, S., Lau, K., Liu, T., Zhao, Y., Lam, P.-M., & Yin, Y. (2009). Mechanical and thermal properties of chicken feather fiber/PLA green composites. Composites Part B: Engineering, 40(7), 650-654. doi:10.1016/j.compositesb.2009.04.011 es_ES
dc.description.references Huda, M. S., Mohanty, A. K., Drzal, L. T., Schut, E., & Misra, M. (2005). «Green» composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation. Journal of Materials Science, 40(16), 4221-4229. doi:10.1007/s10853-005-1998-4 es_ES
dc.description.references Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092 es_ES
dc.description.references Koronis, G., Silva, A., & Fontul, M. (2013). Green composites: A review of adequate materials for automotive applications. Composites Part B: Engineering, 44(1), 120-127. doi:10.1016/j.compositesb.2012.07.004 es_ES
dc.description.references Dicker, M. P. M., Duckworth, P. F., Baker, A. B., Francois, G., Hazzard, M. K., & Weaver, P. M. (2014). Green composites: A review of material attributes and complementary applications. Composites Part A: Applied Science and Manufacturing, 56, 280-289. doi:10.1016/j.compositesa.2013.10.014 es_ES
dc.description.references Bajpai, P. K., Singh, I., & Madaan, J. (2012). Development and characterization of PLA-based green composites. Journal of Thermoplastic Composite Materials, 27(1), 52-81. doi:10.1177/0892705712439571 es_ES
dc.description.references Zini, E., & Scandola, M. (2011). Green composites: An overview. Polymer Composites, 32(12), 1905-1915. doi:10.1002/pc.21224 es_ES
dc.description.references Laka, M. (2003). Mechanics of Composite Materials, 39(2), 183-188. doi:10.1023/a:1023469614577 es_ES
dc.description.references Abdul Khalil, H. P. S., Bhat, A. H., & Ireana Yusra, A. F. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87(2), 963-979. doi:10.1016/j.carbpol.2011.08.078 es_ES
dc.description.references Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037 es_ES
dc.description.references Ndazi, B. S., & Karlsson, S. (2011). Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polymer Letters, 5(2), 119-131. doi:10.3144/expresspolymlett.2011.13 es_ES
dc.description.references Yussuf, A. A., Massoumi, I., & Hassan, A. (2010). Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. Journal of Polymers and the Environment, 18(3), 422-429. doi:10.1007/s10924-010-0185-0 es_ES
dc.description.references NISHIKAWA, Y., NAGASE, N., & FUKUSHIMA, K. (2009). Application of Peanut Hulls as Filler for Plastics. Journal of Environment and Engineering, 4(1), 124-134. doi:10.1299/jee.4.124 es_ES
dc.description.references Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940 es_ES
dc.description.references Sanchez-Vazquez, S. A., Hailes, H. C., & Evans, J. R. G. (2013). Hydrophobic Polymers from Food Waste: Resources and Synthesis. Polymer Reviews, 53(4), 627-694. doi:10.1080/15583724.2013.834933 es_ES
dc.description.references Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042 es_ES
dc.description.references Coltro, L., Mourad, A. L., Kletecke, R. M., Mendonça, T. A., & Germer, S. P. M. (2009). Assessing the environmental profile of orange production in Brazil. The International Journal of Life Cycle Assessment, 14(7), 656-664. doi:10.1007/s11367-009-0097-1 es_ES
dc.description.references Rezzadori, K., Benedetti, S., & Amante, E. R. (2012). Proposals for the residues recovery: Orange waste as raw material for new products. Food and Bioproducts Processing, 90(4), 606-614. doi:10.1016/j.fbp.2012.06.002 es_ES
dc.description.references Borah, J. S., & Kim, D. S. (2016). Recent development in thermoplastic/wood composites and nanocomposites: A review. Korean Journal of Chemical Engineering, 33(11), 3035-3049. doi:10.1007/s11814-016-0183-6 es_ES
dc.description.references Yang, H.-S., Kim, H.-J., Park, H.-J., Lee, B.-J., & Hwang, T.-S. (2006). Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Composite Structures, 72(4), 429-437. doi:10.1016/j.compstruct.2005.01.013 es_ES
dc.description.references Raquez, J.-M., Degée, P., Nabar, Y., Narayan, R., & Dubois, P. (2006). Biodegradable materials by reactive extrusion: from catalyzed polymerization to functionalization and blend compatibilization. Comptes Rendus Chimie, 9(11-12), 1370-1379. doi:10.1016/j.crci.2006.09.004 es_ES
dc.description.references Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057 es_ES
dc.description.references Meng, Q.-K., Heuzey, M.-C., & Carreau, P. J. (2012). Effects of a Multifunctional Polymeric Chain Extender on the Properties of Polylactide and Polylactide/Clay Nanocomposites. International Polymer Processing, 27(5), 505-516. doi:10.3139/217.2647 es_ES
dc.description.references Najafi, N., Heuzey, M. C., & Carreau, P. J. (2012). Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender. Composites Science and Technology, 72(5), 608-615. doi:10.1016/j.compscitech.2012.01.005 es_ES
dc.description.references Zhang, J.-F., & Sun, X. (2004). Mechanical Properties of Poly(lactic acid)/Starch Composites Compatibilized by Maleic Anhydride. Biomacromolecules, 5(4), 1446-1451. doi:10.1021/bm0400022 es_ES
dc.description.references Orozco, V. H., Brostow, W., Chonkaew, W., & López, B. L. (2009). Preparation and Characterization of Poly(Lactic Acid)-g-Maleic Anhydride + Starch Blends. Macromolecular Symposia, 277(1), 69-80. doi:10.1002/masy.200950309 es_ES
dc.description.references Xiong, Z., Zhang, L., Ma, S., Yang, Y., Zhang, C., Tang, Z., & Zhu, J. (2013). Effect of castor oil enrichment layer produced by reaction on the properties of PLA/HDI-g-starch blends. Carbohydrate Polymers, 94(1), 235-243. doi:10.1016/j.carbpol.2013.01.038 es_ES
dc.description.references Mamun, A. A., Heim, H.-P., Beg, D. H., Kim, T. S., & Ahmad, S. H. (2013). PLA and PP composites with enzyme modified oil palm fibre: A comparative study. Composites Part A: Applied Science and Manufacturing, 53, 160-167. doi:10.1016/j.compositesa.2013.06.010 es_ES
dc.description.references García-García, D., Carbonell, A., Samper, M. D., García-Sanoguera, D., & Balart, R. (2015). Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering, 78, 256-265. doi:10.1016/j.compositesb.2015.03.080 es_ES
dc.description.references Garcia-Garcia, D., Fenollar, O., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2016). Improvement of Mechanical Ductile Properties of Poly(3-hydroxybutyrate) by Using Vegetable Oil Derivatives. Macromolecular Materials and Engineering, 302(2), 1600330. doi:10.1002/mame.201600330 es_ES
dc.description.references Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039 es_ES
dc.description.references Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062 es_ES
dc.description.references Xiong, Z., Yang, Y., Feng, J., Zhang, X., Zhang, C., Tang, Z., & Zhu, J. (2013). Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil. Carbohydrate Polymers, 92(1), 810-816. doi:10.1016/j.carbpol.2012.09.007 es_ES
dc.description.references Mauck, S. C., Wang, S., Ding, W., Rohde, B. J., Fortune, C. K., Yang, G., … Robertson, M. L. (2016). Biorenewable Tough Blends of Polylactide and Acrylated Epoxidized Soybean Oil Compatibilized by a Polylactide Star Polymer. Macromolecules, 49(5), 1605-1615. doi:10.1021/acs.macromol.5b02613 es_ES
dc.description.references Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208 es_ES
dc.description.references Crespo, J. E., Balart, R., Sanchez, L., & Lopez, J. (2007). Mechanical behaviour of vinyl plastisols with cellulosic fillers. Analysis of the interface between particles and matrices. International Journal of Adhesion and Adhesives, 27(5), 422-428. doi:10.1016/j.ijadhadh.2006.09.013 es_ES
dc.description.references Crespo, J. E., Sanchez, L., Parres, F., & López, J. (2007). Mechanical and morphological characterization of PVC plastisol composites with almond husk fillers. Polymer Composites, 28(1), 71-77. doi:10.1002/pc.20256 es_ES
dc.description.references Arrieta, M. P., Samper, M. D., López, J., & Jiménez, A. (2014). Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. Journal of Polymers and the Environment, 22(4), 460-470. doi:10.1007/s10924-014-0654-y es_ES
dc.description.references Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024 es_ES
dc.description.references Kulinski, Z., Piorkowska, E., Gadzinowska, K., & Stasiak, M. (2006). Plasticization of Poly(l-lactide) with Poly(propylene glycol). Biomacromolecules, 7(7), 2128-2135. doi:10.1021/bm060089m es_ES
dc.description.references Kowalczyk, M., Pluta, M., Piorkowska, E., & Krasnikova, N. (2012). Plasticization of polylactide with block copolymers of ethylene glycol and propylene glycol. Journal of Applied Polymer Science, 125(6), 4292-4301. doi:10.1002/app.36563 es_ES
dc.description.references Arrieta, M. P., Castro-López, M. del M., Rayón, E., Barral-Losada, L. F., López-Vilariño, J. M., López, J., & González-Rodríguez, M. V. (2014). Plasticized Poly(lactic acid)–Poly(hydroxybutyrate) (PLA–PHB) Blends Incorporated with Catechin Intended for Active Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 62(41), 10170-10180. doi:10.1021/jf5029812 es_ES
dc.description.references Burgos, N., Martino, V. P., & Jiménez, A. (2013). Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651-658. doi:10.1016/j.polymdegradstab.2012.11.009 es_ES
dc.description.references Chun, K. S., Husseinsyah, S., & Osman, H. (2012). Mechanical and thermal properties of coconut shell powder filled polylactic acid biocomposites: effects of the filler content and silane coupling agent. Journal of Polymer Research, 19(5). doi:10.1007/s10965-012-9859-8 es_ES
dc.description.references Lee, S.-H., & Wang, S. (2006). Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A: Applied Science and Manufacturing, 37(1), 80-91. doi:10.1016/j.compositesa.2005.04.015 es_ES
dc.description.references Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063 es_ES
dc.description.references Choi, K.-M., Lim, S.-W., Choi, M.-C., Kim, Y.-M., Han, D.-H., & Ha, C.-S. (2014). Thermal and mechanical properties of poly(lactic acid) modified by poly(ethylene glycol) acrylate through reactive blending. Polymer Bulletin, 71(12), 3305-3321. doi:10.1007/s00289-014-1251-x es_ES
dc.description.references Delgado, P. S., Lana, S. L. B., Ayres, E., Patrício, P. O. S., & Oréfice, R. L. (2012). The potential of bamboo in the design of polymer composites. Materials Research, 15(4), 639-644. doi:10.1590/s1516-14392012005000073 es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329 es_ES
dc.description.references Villalobos, M., Awojulu, A., Greeley, T., Turco, G., & Deeter, G. (2006). Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics. Energy, 31(15), 3227-3234. doi:10.1016/j.energy.2006.03.026 es_ES
dc.description.references Al-Itry, R., Lamnawar, K., & Maazouz, A. (2012). Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability, 97(10), 1898-1914. doi:10.1016/j.polymdegradstab.2012.06.028 es_ES
dc.description.references Kumar, R., Yakubu, M. K., & Anandjiwala, R. D. (2010). Biodegradation of flax fiber reinforced poly lactic acid. Express Polymer Letters, 4(7), 423-430. doi:10.3144/expresspolymlett.2010.53 es_ES
dc.description.references Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97(5), 2014-2025. doi:10.1002/app.21779 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem