- -

Aplicación de la transformada de Hilbert-Huang en el análisis de señales de comunicación satelital

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Aplicación de la transformada de Hilbert-Huang en el análisis de señales de comunicación satelital

Mostrar el registro completo del ítem

Villanueva, J.; Bueno, M.; Simón, J.; Molinas, M.; Flores, J.; Méndez, PE. (2020). Aplicación de la transformada de Hilbert-Huang en el análisis de señales de comunicación satelital. Revista Iberoamericana de Automática e Informática industrial. 17(2):181-189. https://doi.org/10.4995/riai.2019.10878

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/142979

Ficheros en el ítem

Metadatos del ítem

Título: Aplicación de la transformada de Hilbert-Huang en el análisis de señales de comunicación satelital
Otro titulo: Application of Hilbert-Huang transform in the analysis of satellite-communication signals
Autor: Villanueva, J. Bueno, M. Simón, J. Molinas, M. Flores, J. Méndez, P. E.
Fecha difusión:
Resumen:
[EN] In communication links between satellites and ground stations, the transmitted signal is exposed to disturbances such as noise of different types that hinder reception or retrieval of information. For that reason, ...[+]


[ES] En los enlaces de comunicación entre satélites y estaciones terrenas, la señal transmitida está expuesta a perturbaciones y ruido de diferentes tipos que dificultan la recepción y recuperación de la información. Por ...[+]
Palabras clave: Satellite-Communication signals , Empirical-Mode-Decomposition , Instant-Frequency , Hilbert Huang Transform , Análisis de Señales de Comunicación Satelital , Descomposición de Modo Empírico , Frecuencia Instantánea , Transformada de Hilbert Huang
Derechos de uso: Reconocimiento (by)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2019.10878
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2019.10878
Código del Proyecto:
info:eu-repo/grantAgreement/CONACyT//3066/
info:eu-repo/grantAgreement/UNAM/PAPIIT/IA104218/MX/Investigación y desarrollo de sistemas de control inteligente móvil en codiseño con estrategias de alto rendimiento sobre plataformas multiprocesador/
Agradecimientos:
Este trabajo fue apoyado por el Consejo Nacional de Ciencia y Tecnología (CONACyT) a través del programa de Cátedras CONACYT dentro del proyecto 3066, la Universidad Autónoma de Zacatecas y por UNAM-PAPIIT IA104218.
Tipo: Artículo

References

Boashash, B., Apr 1992. Estimating and interpreting the instantaneous fre- quency of a signal. Part 1: Fundamentals. Proceedings of the IEEE 80 (4), 520-538. https://doi.org/10.1109/5.135376

Bueno-Lopez, M., Giraldo, E., Molinas, M., December 2017a. Analysis of neu- ral activity from EEG data based on EMD frequency bands. In: 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS). Vol. 1. IEEE, Batumi, Georgia, pp. 401-405. https://doi.org/10.1109/ICECS.2017.8292116

Bueno-Lopez, M., Molinas, M., Kulia, G., September 2017b. Understanding instantaneous frequency detection: A discussion of Hilbert-Huang Trans- form versus Wavelet Transform. In: International Work-Conference on Time Series Analysis-ITISE. Vol. 1. University of Granada, Granada, Spain, pp. 474-486. [+]
Boashash, B., Apr 1992. Estimating and interpreting the instantaneous fre- quency of a signal. Part 1: Fundamentals. Proceedings of the IEEE 80 (4), 520-538. https://doi.org/10.1109/5.135376

Bueno-Lopez, M., Giraldo, E., Molinas, M., December 2017a. Analysis of neu- ral activity from EEG data based on EMD frequency bands. In: 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS). Vol. 1. IEEE, Batumi, Georgia, pp. 401-405. https://doi.org/10.1109/ICECS.2017.8292116

Bueno-Lopez, M., Molinas, M., Kulia, G., September 2017b. Understanding instantaneous frequency detection: A discussion of Hilbert-Huang Trans- form versus Wavelet Transform. In: International Work-Conference on Time Series Analysis-ITISE. Vol. 1. University of Granada, Granada, Spain, pp. 474-486.

Dowel, J. M. (Ed.), 2014. The Cubesat Explosion. Harvard, http://planet4589.org/talks/cubesats/cube3.pdf.

E. Hari Krishna, M. Raghuram, K. V. M. K. S., Reddy, K. A., May 2012. Emd based ofdm channel estimation. IEEE International Instrumentation and Measurement Technology Conference Proceedings. https://doi.org/10.1109/I2MTC.2012.6229395

Gasca Segura, M., Bueno-Lopez, M., Molinas, M., Fosso, O. B., April 2018. Time-frequency analysis for nonlinear and non-stationary signals using hht: A mode mixing separation technique. IEEE Latin America Transactions 16 (4), 1091-1098. https://doi.org/10.1109/TLA.2018.8362142

Hao Chen, J.-h. G., Liu, T., December 2013. Fm signal parameter estimation using the hilbert huang transform. 6th International Congress on Image and Signal Processing (CISP). https://doi.org/10.1109/CISP.2013.6743863

Hou, T. Y., Shi, Z., Sept 2013. Data-driven time-frequency analysis. Applied and Computational Harmonic Analysis 35 (2), 284-308. https://doi.org/10.1016/j.acha.2012.10.001

Huang, N. E., Shen, S. S. P. (Eds.), 2014. Hilbert-Huang Transform and its Ap- plications. Vol. 16. Interdisciplinary Mathematical Sciences. https://doi.org/10.1142/5862

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., Liu, H. H., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analy- sis. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 454 (1971), 903-995. https://doi.org/10.1098/rspa.1998.0193

Huang Yuchun, Huang Zailu, H. B., Shuhua, X., September 2007. Integrated fft- based interpolation frequency estimator and its application to feature extrac- tion of fm signal. International Conference on Wireless Communications, Networking and Mobile Computing. https://doi.org/10.1109/WICOM.2007.305

Mandic, D. P., Rehman, N. U., Wu, Z., Huang, N. E., Nov 2013. Empirical mode decomposition-based time-frequency analysis of multivariate signals: The power of adaptive data analysis. IEEE Signal Processing Magazine 30 (6), 74-86.

https://doi.org/10.1109/MSP.2013.2267931

N.Padmaja, D. a., R.Swathi, September 2011. Signal processing of radar echoes using wavelets and hilbert huang transform. Signal & Image Processing : An International Journal (SIPIJ) 2 (3). https://doi.org/10.5121/sipij.2011.2310

Radiometrix, 2010a. Manual: 500mw rf power amplifier module. urlhttp://www.radiometrix.com/content/afs2-0.

Radiometrix, 2010b. Manual:uhf narrow band fm multi channel transceiver. urlhttps://www.radiometrix.com/node/187.

Stone, T. (Ed.), 2004. Technical Report NAS-04-009: Introduc- tion to Satellite Communications Technology for NREN. NASA, https://www.nas.nasa.gov/assets/pdf/techreports/2004/nas-04-009.pdf.

Wang, X., Wang, Y., October 2013. A single-channel bss new method of time- frequency overlapped communication signal based on multi-scale cwt and ica. International Conference on Computational Problem-Solving (ICCP). https://doi.org/10.1109/ICCPS.2013.6893582

Wu, Z., Huang, N. E. (Eds.), August 2009. Ensemble Empirical Mode Decom- position: A Noise Assisted Data Analysis Method. Vol. 1. World Scientific Publishing Company. https://doi.org/10.1142/S1793536909000047

Xu, D., Xia, Y., Mandic, D. P., Feb 2016. Optimization in quaternion dynamic systems: Gradient, hessian, and learning algorithms. IEEE Transactions on Neural Networks and Learning Systems 27 (2), 249-261. https://doi.org/10.1109/TNNLS.2015.2440473

Yingjun Yuan, Zhitao Huang, H. W., Wang, X., 2013. Specific emitter iden- tification based on hilbert-huang transform-based time-frequency-energy distribution features. IET Communications 8 (13), 2404-2412. https://doi.org/10.1049/iet-com.2013.0865

Yu, W., Qian, X., November 2010. Some factors which affect the satellite com- munication. In: 2nd International Workshop on Database Technology and Applications. IEEE, Wuhan, China. https://doi.org/10.1109/DBTA.2010.5659067

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem