- -

Sintonización y comparación de conceptos de diseño aplicando la optimalidad de Pareto. Un caso de estudio del biorreactor de Cholette

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sintonización y comparación de conceptos de diseño aplicando la optimalidad de Pareto. Un caso de estudio del biorreactor de Cholette

Mostrar el registro completo del ítem

Torralba-Morales, L.; Reynoso-Meza, G.; Carrillo-Ahumada, J. (2020). Sintonización y comparación de conceptos de diseño aplicando la optimalidad de Pareto. Un caso de estudio del biorreactor de Cholette. Revista Iberoamericana de Automática e Informática industrial. 17(2):190-201. https://doi.org/10.4995/riai.2019.11424

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/142984

Ficheros en el ítem

Metadatos del ítem

Título: Sintonización y comparación de conceptos de diseño aplicando la optimalidad de Pareto. Un caso de estudio del biorreactor de Cholette
Otro titulo: Tuning and comparison of design concepts applying Pareto optimality. A case study of Cholette bioreactor
Autor: Torralba-Morales, L.M. Reynoso-Meza, G. Carrillo-Ahumada, J.
Fecha difusión:
Resumen:
[EN] The linear control PI (D) and its variants are control structures (design concepts) that are still used in industrial processes. The control engineer will prefer one over another according to a desired tradeoff among ...[+]


[ES] El control lineal PI(D) y sus variantes, son estructuras de control (conceptos de diseño) que actualmente se siguen utilizando en procesos industriales. La elección de una estructura de control sobre otra reside en ...[+]
Palabras clave: PID control , Design concepts , Cholette’s bioreactor , Optimum control , Decision making , Control PID , Conceptos de diseño , Biorreactor de Cholette , Control óptimo , Toma de decisión
Derechos de uso: Reconocimiento (by)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2019.11424
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2019.11424
Tipo: Artículo

References

Ajmeri, M., Ali, A., 2015. Two degree of freedom control scheme for unstable processes with small time delay. ISA Transactions 56, 308-326. https://doi.org/10.1016/j.isatra.2014.12.007

Aström, K., Hägglund, T., 2006. Advanced PID Control. Vol. 461. ISA-The Instrumentation, Systems, and Automation Society Research Triangle.

Aström, K. J., Hägglund, T., 1995. PID Controllers: Theory, Design, and Tuning. Instrument Society of America, Research Triangle Park, NC. [+]
Ajmeri, M., Ali, A., 2015. Two degree of freedom control scheme for unstable processes with small time delay. ISA Transactions 56, 308-326. https://doi.org/10.1016/j.isatra.2014.12.007

Aström, K., Hägglund, T., 2006. Advanced PID Control. Vol. 461. ISA-The Instrumentation, Systems, and Automation Society Research Triangle.

Aström, K. J., Hägglund, T., 1995. PID Controllers: Theory, Design, and Tuning. Instrument Society of America, Research Triangle Park, NC.

Carlos-Hernández, S., Sanchez, E. N., Béteau, J.-F., Jiménez, L. D., 2014. Análisis de un Proceso de Tratamiento de Efluentes para Producción de Metano. Revista Iberoamericana de Automatica e Informática Industrial RIAI 11 (2), 236 - 246. https://doi.org/10.1016/j.riai.2014.02.006

Carrillo-Ahumada, J., Paramo-Calderón, D., Aparicio-Saguilán, A., Rodríguez Jimenes, G., García-Alvarado, M., 2014. Approach of a Measurement of Linearized Representation of a Nonlinear System. Application to (Bio)Chemical reactors. Revista Mexicana de Ingenier'ıa Qu'ımica 13 (2), 631-647.

Carrillo-Ahumada, J., Reynoso-Meza, G., García-Nieto, S., Sanchis, J., García Alvarado, M., 2015. Sintonización de controladores Pareto-óptimo robustos para sistemas multivariables. Aplicación en un helicóptero de 2 grados de libertad. Revista Iberoamericana de Automática e Informática industrial 12, 177-188. https://doi.org/10.1016/j.riai.2015.03.002

Carrillo-Ahumada, J., Rodríguez-Jimenes, G., García-Alvarado, M., 2011. Tunning optimal-robust linear MIMO controllers of chemical reactors by using Pareto optimality. Chemical Engineering Journal 174 (1), 357 - 367. https://doi.org/10.1016/j.cej.2011.09.007

Chen, Z., Yuan, X., Ji, B., Wang, P., Tian, H., 2014. Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II. Energy Conversion and Management 84, 390 - 404. https://doi.org/10.1016/j.enconman.2014.04.052

Chidambaram, M., Reddy, G., 1996. Nonlinear control of systems with input and output multiplicities. Computers and Chemical Engineering 20 (3), 295 - 299. https://doi.org/10.1016/0098-1354(95)00019-4

Darby, M. L., Nikolaou, M., 2012. MPC: Current practice and challenges. Control Engineering Practice 20 (4), 328 - 342. https://doi.org/10.1016/j.conengprac.2011.12.004

García-Alvarado, M., Ruiz-López, I., Torres-Ramos, T., 2005. Tuning of multi-variate PID controllers based on characteristic matrix eigenvalues, Lyapunov functions and robustness criteria. Chemical Engineering Science 60 (4), 897 - 905. https://doi.org/10.1016/j.ces.2004.09.047

Gómez, L., Botero, H., Álvarez, H., di Sciascio, F., 2015. Análisis de la Controlabilidad de Estado de Sistemas Irreversibles Mediante teoría de conjuntos. Revista Iberoamericana de Automática e Informática Industrial RIAI 12 (2), 145 - 153.

https://doi.org/10.1016/j.riai.2015.02.002

Hernández, F., Herrera Fernández, F., 03 2012. Identificación Inteligente de un Proceso Fermentativo Usando el Algoritmo GMDH Modificado. Revista Iberoamericana de Automática e Informática Industrial RIAI 9, 313. https://doi.org/10.1016/j.riai.2011.11.001

Huang, H., Chen, C., 1999. Autotuning of PID Controllers for Second Order Unstable Process Having Dead Time. Journal of Chemical Engineering of Japan 32 (4), 486-497. https://doi.org/10.1252/jcej.32.486

Huilcapi, V., Blasco, X., Herrero, J. M., Reynoso-Meza, G., 2019. A loop pairing method for multivariable control systems under a multi-objective optimization approach. IEEE Access 7, 81994-82014. https://doi.org/10.1109/ACCESS.2019.2923654

Ibarra-Junquera, V., Rosu, H., 2007. PI-controlled bioreactor as a generalized Liénard system. Computers and Chemical Engineering 31 (3), 136-141. https://doi.org/10.1016/j.compchemeng.2006.05.023

Indranil, P., Saptarshi, D., 2015. Fractional-order load-frequency control of interconnected power systems using chaotic multi-objective optimization. Applied Soft Computing 29, 328 - 344. https://doi.org/10.1016/j.asoc.2014.12.032

Jhunjhunwala, M. K., Chidambaram, M., 2001. PID Controller tunning for Unstable Systems by Optimization Method. Chemical Engineering Communications. 185 (1), 91-113. https://doi.org/10.1080/00986440108912857

Márquez-Rubio, J., del Muro-Cuéllar, B., 2010. Control basado en un esquema observador para sistemas de primer orden con retardo. Revista Mexicana de Ingeniería Química 09, 43-52.

Mattson, C. A., Messac, A., 2005. Pareto Frontier Based Concept Selection Under Uncertainty, with Visualization. Optimization and Engineering 6 (1), 85-115. https://doi.org/10.1023/B:OPTE.0000048538.35456.45

Mora, L. A., Amaya, J. E., 2017. Un nuevo Método de Identificación Basado en la Respuesta Escalón en Lazo Abierto de Sistemas Sobre-amortiguados. Revista Iberoamericana de Automática e Informática industrial 14 (1), 31- 43. https://doi.org/10.1016/j.riai.2016.09.006

Naranjani, Y., Sardahi, Y., Chen, Y., Sun, J.-Q., 2015. Multi-objective optimization of distributed-order fractional damping. Communications in Nonlinear Science and Numerical Simulation 24 (1), 159 - 168. https://doi.org/10.1016/j.cnsns.2014.12.011

Normey-Rico, J., Camacho, E., 2009. Unified approach for robust dead-time compensator design. Journal of Process Control 19 (1), 38-47.

https://doi.org/10.1016/j.jprocont.2008.02.003

O'Dwyer, A., 2009. Handbook of PI and PID controller tuning rules. IFAC Proceedings Volumes 57. https://doi.org/10.1142/p575

Padma, S., Chidambaram, M., 2002. Identification of Unstable transfer Model with a Zero by Optimization method. Journal of the Indian Institute of Science 82 (5 & 6), 219-225.

Padma, S., Chidambaram, M., 2005. Set Point Weighted PID Controllers For Unstable Systems. Chemical Engineering Communications 192 (1), 1-13. https://doi.org/10.1080/00986440590473137

Rajinikanth, V., Latha, K., 2012a. Controller Parameter Optimization for Nonlinear Systems Using Enhanced Bacteria Foraging Algorithm. Applied Computational Intelligence and Soft Computing 2012. https://doi.org/10.1155/2012/214264

Rajinikanth, V., Latha, K., 2012b. I-PD Controller Tuning for Unstable System Using Bacterial Foraging Algorithm: A Study Based on Various Error Criterion. Applied Computational Intelligence and Soft Computing 2012. https://doi.org/10.1155/2012/329389

Reynoso-Meza, G., 2014. Controller tuning by means of evolutionary multiobjective optimization: a holistic multiobjective optimization design procedure. Ph.D. thesis, Universitat Politècnica de València, http://hdl.handle.net/10251/38248.

Reynoso-Meza, G., Carrillo-Ahumada, J., Boada, Y., Picó, J., 2016. PID controller tuning for unstable processes using a multi-objective optimisation design procedure. IFAC-PapersOnLine 49 (7), 284 - 289. https://doi.org/10.1016/j.ifacol.2016.07.287

Reynoso-Meza, G., Garcia-Nieto, S., Sanchis, J., Blasco, F. X., 2012. Controller tuning by means of multi-objective optimization algorithms: A global tuning framework. IEEE Transactions on Control Systems Technology 21 (2), 445-458. https://doi.org/10.1109/TCST.2012.2185698

Reynoso-Meza, G., Sanchis, J., Blasco, X., Martínez, M., 2013. Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y perspectivas. Revista Iberoamericana de Automática e Informática Industrial RIAI 10 (3), 251-268. https://doi.org/10.1016/j.riai.2013.04.001

Samad, T., Feb 2017. A survey on industry impact and challenges thereof [technical activities]. IEEE Control Systems Magazine 37 (1), 17-18. https://doi.org/10.1109/MCS.2016.2621438

Sanchez, A., Rotstein, G., Alsop, N., Bromberg, J., Gollain, C., Sorensen, S., Macchietto, S., Jakeman, C., 2002. Improving the development of eventdriven control systems in the batch processing industry. A case study. ISA Transactions 41 (3), 343 - 363. https://doi.org/10.1016/S0019-0578(07)60093-7

Seshagiri, R., Rao, V., Chidambaram, M., 2007. Simple Analytical Design of Modified Smith Predictor with Improved Performance for Unstable FirstOrder Plus Time Delay (FOPTD) Processes. Industrial & Engineering Chemistry Research 46 (13), 4561-4571. https://doi.org/10.1021/ie061308n

Shariati, A., Taghirad, H., Fatehi, A., 2014. A neutral system approach to H PD/PI controller design of processes with uncertain input delay. Journal of Process Control 24 (3), 144-157. https://doi.org/10.1016/j.jprocont.2014.01.003

SivaramaKrishnan, S., Tangirla., 2008. Sliding mode controller for unstable systems. Chemical and Biochemical Engineering Quarterly 22 (1), 41-47.

Smith, C. A., Corripio, A. B., Basurto, S. D. M., 1991. Control automático de procesos: teoría y práctica. No. 968-18-3791-6. Limusa.

Sree, P., Chidambaram, M., 2003a. Control of unstable bioreactor with dominant unstable zero. Chemical and Biochemical Engineering Quarterly 17 (3), 139-145.

Sree, P., Chidambaram, M., 2003b. A Simple Method of Tuning PI Controllers for Unstable Systems with a Zero. Chemical and Biochemical EngineeringQuarte rly 17 (3), 207-212.

Vilanova, R., Alfaro, V. M., 2011. Control PID robusto: Una visión panorámica. Revista Iberoamericana de Automática e Informática Industrial RIAI 8 (3), 141 - 158. https://doi.org/10.1016/j.riai.2011.06.003

Yu, W., Wilson, D., Young, B., 2010. Control performance assessment for nonlinear systems. Journal of Process Control 20 (10), 1235 - 1242. https://doi.org/10.1016/j.jprocont.2010.09.002

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem