Mostrar el registro sencillo del ítem
dc.contributor.author | Torralba-Morales, L.M. | es_ES |
dc.contributor.author | Reynoso-Meza, G. | es_ES |
dc.contributor.author | Carrillo-Ahumada, J. | es_ES |
dc.date.accessioned | 2020-05-12T18:19:30Z | |
dc.date.available | 2020-05-12T18:19:30Z | |
dc.date.issued | 2020-04-07 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/142984 | |
dc.description.abstract | [EN] The linear control PI (D) and its variants are control structures (design concepts) that are still used in industrial processes. The control engineer will prefer one over another according to a desired tradeoff among complexity and performance indices. Given that this exchange might be in conflict, an analisis using multiobjective optimisation tools could be interesting. With this perspective, different Pareto fronts from different design concetps are compared, enabling a global, and not punctual, performance comparison. In this work a global methodology for comparing design concepts in dfferent stages was developed. The first step was to establish a region of stability. In the second stage, the stability region was considered as a search space for the multiobjective optimization process, approximating a Pareto set and front. In the third stage, a multicriteria analysis of the Pareto fronts was carried out, together with the simulation in the time domain for the output and control signals. As case study to validate this proposal the Cholette’s biorreactor was selected. The proposed methodology allows a better understanding of a conceptual solution, justifies and determines the use of a design concept thus meeting the needs of the designer. | es_ES |
dc.description.abstract | [ES] El control lineal PI(D) y sus variantes, son estructuras de control (conceptos de diseño) que actualmente se siguen utilizando en procesos industriales. La elección de una estructura de control sobre otra reside en el intercambio de prestaciones entre complejidad y rendimiento. Dado que este intercambio de prestaciones normalmente estará en conflicto, un análisis desde el punto de vista multiobjetivo puede ser de interés. Desde tal perspectiva, se analizan frentes de Pareto de diferentes conceptos de diseño, con lo que se realiza una comparación global y no puntual de tales conceptos. En este trabajo se plantea una propuesta metodológica para dicha comparación en diferentes etapas. La primera, fue establecer una región de estabilidad. En la segunda etapa se consideró la región de estabilidad como espacio de búsqueda para el proceso de optimización multiobjetivo calculando un conjunto y frente de Pareto. En la tercera etapa se realizó un análisis multicriterio de los frentes de Pareto, junto con la simulación en el dominio del tiempo para las señales de salida y de control. Como caso de estudio para validar la propuesta se ha elegido el biorreactor de Cholette que presenta diferentes condiciones de operación. La metodología propuesta permite una mejor comprensión de una solución conceptual, justifica y determina el uso de un concepto de diseño cumpliendo así con las necesidades del diseñador. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | PID control | es_ES |
dc.subject | Design concepts | es_ES |
dc.subject | Cholette’s bioreactor | es_ES |
dc.subject | Optimum control | es_ES |
dc.subject | Decision making | es_ES |
dc.subject | Control PID | es_ES |
dc.subject | Conceptos de diseño | es_ES |
dc.subject | Biorreactor de Cholette | es_ES |
dc.subject | Control óptimo | es_ES |
dc.subject | Toma de decisión | es_ES |
dc.title | Sintonización y comparación de conceptos de diseño aplicando la optimalidad de Pareto. Un caso de estudio del biorreactor de Cholette | es_ES |
dc.title.alternative | Tuning and comparison of design concepts applying Pareto optimality. A case study of Cholette bioreactor | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2019.11424 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Torralba-Morales, L.; Reynoso-Meza, G.; Carrillo-Ahumada, J. (2020). Sintonización y comparación de conceptos de diseño aplicando la optimalidad de Pareto. Un caso de estudio del biorreactor de Cholette. Revista Iberoamericana de Automática e Informática industrial. 17(2):190-201. https://doi.org/10.4995/riai.2019.11424 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2019.11424 | es_ES |
dc.description.upvformatpinicio | 190 | es_ES |
dc.description.upvformatpfin | 201 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\11424 | es_ES |
dc.description.references | Ajmeri, M., Ali, A., 2015. Two degree of freedom control scheme for unstable processes with small time delay. ISA Transactions 56, 308-326. https://doi.org/10.1016/j.isatra.2014.12.007 | es_ES |
dc.description.references | Aström, K., Hägglund, T., 2006. Advanced PID Control. Vol. 461. ISA-The Instrumentation, Systems, and Automation Society Research Triangle. | es_ES |
dc.description.references | Aström, K. J., Hägglund, T., 1995. PID Controllers: Theory, Design, and Tuning. Instrument Society of America, Research Triangle Park, NC. | es_ES |
dc.description.references | Carlos-Hernández, S., Sanchez, E. N., Béteau, J.-F., Jiménez, L. D., 2014. Análisis de un Proceso de Tratamiento de Efluentes para Producción de Metano. Revista Iberoamericana de Automatica e Informática Industrial RIAI 11 (2), 236 - 246. https://doi.org/10.1016/j.riai.2014.02.006 | es_ES |
dc.description.references | Carrillo-Ahumada, J., Paramo-Calderón, D., Aparicio-Saguilán, A., Rodríguez Jimenes, G., García-Alvarado, M., 2014. Approach of a Measurement of Linearized Representation of a Nonlinear System. Application to (Bio)Chemical reactors. Revista Mexicana de Ingenier'ıa Qu'ımica 13 (2), 631-647. | es_ES |
dc.description.references | Carrillo-Ahumada, J., Reynoso-Meza, G., García-Nieto, S., Sanchis, J., García Alvarado, M., 2015. Sintonización de controladores Pareto-óptimo robustos para sistemas multivariables. Aplicación en un helicóptero de 2 grados de libertad. Revista Iberoamericana de Automática e Informática industrial 12, 177-188. https://doi.org/10.1016/j.riai.2015.03.002 | es_ES |
dc.description.references | Carrillo-Ahumada, J., Rodríguez-Jimenes, G., García-Alvarado, M., 2011. Tunning optimal-robust linear MIMO controllers of chemical reactors by using Pareto optimality. Chemical Engineering Journal 174 (1), 357 - 367. https://doi.org/10.1016/j.cej.2011.09.007 | es_ES |
dc.description.references | Chen, Z., Yuan, X., Ji, B., Wang, P., Tian, H., 2014. Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II. Energy Conversion and Management 84, 390 - 404. https://doi.org/10.1016/j.enconman.2014.04.052 | es_ES |
dc.description.references | Chidambaram, M., Reddy, G., 1996. Nonlinear control of systems with input and output multiplicities. Computers and Chemical Engineering 20 (3), 295 - 299. https://doi.org/10.1016/0098-1354(95)00019-4 | es_ES |
dc.description.references | Darby, M. L., Nikolaou, M., 2012. MPC: Current practice and challenges. Control Engineering Practice 20 (4), 328 - 342. https://doi.org/10.1016/j.conengprac.2011.12.004 | es_ES |
dc.description.references | García-Alvarado, M., Ruiz-López, I., Torres-Ramos, T., 2005. Tuning of multi-variate PID controllers based on characteristic matrix eigenvalues, Lyapunov functions and robustness criteria. Chemical Engineering Science 60 (4), 897 - 905. https://doi.org/10.1016/j.ces.2004.09.047 | es_ES |
dc.description.references | Gómez, L., Botero, H., Álvarez, H., di Sciascio, F., 2015. Análisis de la Controlabilidad de Estado de Sistemas Irreversibles Mediante teoría de conjuntos. Revista Iberoamericana de Automática e Informática Industrial RIAI 12 (2), 145 - 153. | es_ES |
dc.description.references | https://doi.org/10.1016/j.riai.2015.02.002 | es_ES |
dc.description.references | Hernández, F., Herrera Fernández, F., 03 2012. Identificación Inteligente de un Proceso Fermentativo Usando el Algoritmo GMDH Modificado. Revista Iberoamericana de Automática e Informática Industrial RIAI 9, 313. https://doi.org/10.1016/j.riai.2011.11.001 | es_ES |
dc.description.references | Huang, H., Chen, C., 1999. Autotuning of PID Controllers for Second Order Unstable Process Having Dead Time. Journal of Chemical Engineering of Japan 32 (4), 486-497. https://doi.org/10.1252/jcej.32.486 | es_ES |
dc.description.references | Huilcapi, V., Blasco, X., Herrero, J. M., Reynoso-Meza, G., 2019. A loop pairing method for multivariable control systems under a multi-objective optimization approach. IEEE Access 7, 81994-82014. https://doi.org/10.1109/ACCESS.2019.2923654 | es_ES |
dc.description.references | Ibarra-Junquera, V., Rosu, H., 2007. PI-controlled bioreactor as a generalized Liénard system. Computers and Chemical Engineering 31 (3), 136-141. https://doi.org/10.1016/j.compchemeng.2006.05.023 | es_ES |
dc.description.references | Indranil, P., Saptarshi, D., 2015. Fractional-order load-frequency control of interconnected power systems using chaotic multi-objective optimization. Applied Soft Computing 29, 328 - 344. https://doi.org/10.1016/j.asoc.2014.12.032 | es_ES |
dc.description.references | Jhunjhunwala, M. K., Chidambaram, M., 2001. PID Controller tunning for Unstable Systems by Optimization Method. Chemical Engineering Communications. 185 (1), 91-113. https://doi.org/10.1080/00986440108912857 | es_ES |
dc.description.references | Márquez-Rubio, J., del Muro-Cuéllar, B., 2010. Control basado en un esquema observador para sistemas de primer orden con retardo. Revista Mexicana de Ingeniería Química 09, 43-52. | es_ES |
dc.description.references | Mattson, C. A., Messac, A., 2005. Pareto Frontier Based Concept Selection Under Uncertainty, with Visualization. Optimization and Engineering 6 (1), 85-115. https://doi.org/10.1023/B:OPTE.0000048538.35456.45 | es_ES |
dc.description.references | Mora, L. A., Amaya, J. E., 2017. Un nuevo Método de Identificación Basado en la Respuesta Escalón en Lazo Abierto de Sistemas Sobre-amortiguados. Revista Iberoamericana de Automática e Informática industrial 14 (1), 31- 43. https://doi.org/10.1016/j.riai.2016.09.006 | es_ES |
dc.description.references | Naranjani, Y., Sardahi, Y., Chen, Y., Sun, J.-Q., 2015. Multi-objective optimization of distributed-order fractional damping. Communications in Nonlinear Science and Numerical Simulation 24 (1), 159 - 168. https://doi.org/10.1016/j.cnsns.2014.12.011 | es_ES |
dc.description.references | Normey-Rico, J., Camacho, E., 2009. Unified approach for robust dead-time compensator design. Journal of Process Control 19 (1), 38-47. | es_ES |
dc.description.references | https://doi.org/10.1016/j.jprocont.2008.02.003 | es_ES |
dc.description.references | O'Dwyer, A., 2009. Handbook of PI and PID controller tuning rules. IFAC Proceedings Volumes 57. https://doi.org/10.1142/p575 | es_ES |
dc.description.references | Padma, S., Chidambaram, M., 2002. Identification of Unstable transfer Model with a Zero by Optimization method. Journal of the Indian Institute of Science 82 (5 & 6), 219-225. | es_ES |
dc.description.references | Padma, S., Chidambaram, M., 2005. Set Point Weighted PID Controllers For Unstable Systems. Chemical Engineering Communications 192 (1), 1-13. https://doi.org/10.1080/00986440590473137 | es_ES |
dc.description.references | Rajinikanth, V., Latha, K., 2012a. Controller Parameter Optimization for Nonlinear Systems Using Enhanced Bacteria Foraging Algorithm. Applied Computational Intelligence and Soft Computing 2012. https://doi.org/10.1155/2012/214264 | es_ES |
dc.description.references | Rajinikanth, V., Latha, K., 2012b. I-PD Controller Tuning for Unstable System Using Bacterial Foraging Algorithm: A Study Based on Various Error Criterion. Applied Computational Intelligence and Soft Computing 2012. https://doi.org/10.1155/2012/329389 | es_ES |
dc.description.references | Reynoso-Meza, G., 2014. Controller tuning by means of evolutionary multiobjective optimization: a holistic multiobjective optimization design procedure. Ph.D. thesis, Universitat Politècnica de València, http://hdl.handle.net/10251/38248. | es_ES |
dc.description.references | Reynoso-Meza, G., Carrillo-Ahumada, J., Boada, Y., Picó, J., 2016. PID controller tuning for unstable processes using a multi-objective optimisation design procedure. IFAC-PapersOnLine 49 (7), 284 - 289. https://doi.org/10.1016/j.ifacol.2016.07.287 | es_ES |
dc.description.references | Reynoso-Meza, G., Garcia-Nieto, S., Sanchis, J., Blasco, F. X., 2012. Controller tuning by means of multi-objective optimization algorithms: A global tuning framework. IEEE Transactions on Control Systems Technology 21 (2), 445-458. https://doi.org/10.1109/TCST.2012.2185698 | es_ES |
dc.description.references | Reynoso-Meza, G., Sanchis, J., Blasco, X., Martínez, M., 2013. Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y perspectivas. Revista Iberoamericana de Automática e Informática Industrial RIAI 10 (3), 251-268. https://doi.org/10.1016/j.riai.2013.04.001 | es_ES |
dc.description.references | Samad, T., Feb 2017. A survey on industry impact and challenges thereof [technical activities]. IEEE Control Systems Magazine 37 (1), 17-18. https://doi.org/10.1109/MCS.2016.2621438 | es_ES |
dc.description.references | Sanchez, A., Rotstein, G., Alsop, N., Bromberg, J., Gollain, C., Sorensen, S., Macchietto, S., Jakeman, C., 2002. Improving the development of eventdriven control systems in the batch processing industry. A case study. ISA Transactions 41 (3), 343 - 363. https://doi.org/10.1016/S0019-0578(07)60093-7 | es_ES |
dc.description.references | Seshagiri, R., Rao, V., Chidambaram, M., 2007. Simple Analytical Design of Modified Smith Predictor with Improved Performance for Unstable FirstOrder Plus Time Delay (FOPTD) Processes. Industrial & Engineering Chemistry Research 46 (13), 4561-4571. https://doi.org/10.1021/ie061308n | es_ES |
dc.description.references | Shariati, A., Taghirad, H., Fatehi, A., 2014. A neutral system approach to H PD/PI controller design of processes with uncertain input delay. Journal of Process Control 24 (3), 144-157. https://doi.org/10.1016/j.jprocont.2014.01.003 | es_ES |
dc.description.references | SivaramaKrishnan, S., Tangirla., 2008. Sliding mode controller for unstable systems. Chemical and Biochemical Engineering Quarterly 22 (1), 41-47. | es_ES |
dc.description.references | Smith, C. A., Corripio, A. B., Basurto, S. D. M., 1991. Control automático de procesos: teoría y práctica. No. 968-18-3791-6. Limusa. | es_ES |
dc.description.references | Sree, P., Chidambaram, M., 2003a. Control of unstable bioreactor with dominant unstable zero. Chemical and Biochemical Engineering Quarterly 17 (3), 139-145. | es_ES |
dc.description.references | Sree, P., Chidambaram, M., 2003b. A Simple Method of Tuning PI Controllers for Unstable Systems with a Zero. Chemical and Biochemical EngineeringQuarte rly 17 (3), 207-212. | es_ES |
dc.description.references | Vilanova, R., Alfaro, V. M., 2011. Control PID robusto: Una visión panorámica. Revista Iberoamericana de Automática e Informática Industrial RIAI 8 (3), 141 - 158. https://doi.org/10.1016/j.riai.2011.06.003 | es_ES |
dc.description.references | Yu, W., Wilson, D., Young, B., 2010. Control performance assessment for nonlinear systems. Journal of Process Control 20 (10), 1235 - 1242. https://doi.org/10.1016/j.jprocont.2010.09.002 | es_ES |