Mostrar el registro sencillo del ítem
dc.contributor.author | Duarte-Mermoud, Manuel A | es_ES |
dc.contributor.author | Milla, Freddy | es_ES |
dc.date.accessioned | 2020-05-13T19:24:38Z | |
dc.date.available | 2020-05-13T19:24:38Z | |
dc.date.issued | 2018-06-22 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/143090 | |
dc.description.abstract | [EN] A model predictive power system stabilizer is proposed in this paper to damp power oscillations in an electric power system (EPS). The design of the stabilizer is optimal in the sense that its parameters are determined by using off-line particle swarm optimization (PSO) technique. The proposed methodology is applied to an EPS composed by a single machine connected to an infinite bus (SMIB). The analysis is performed through a small signal stability analysis, deriving incremental equations linearized around an operating point. The results obtained by the proposed method are compared with a conventional power system stabilizer, also optimized by PSO. Through numerous computer simulations under different operating conditions andperturbations on the SMIB, it was possible to establish some advantages of the proposed technique as compared with the conventional technique. | es_ES |
dc.description.abstract | [ES] Se propone un estabilizador de potencia predictivo para amortiguar oscilaciones de potencia en un sistema eléctrico de potencia(SEP) formado por una sola máquina conectada a una barra infinita (Single Machine Infinite Bus, SMIB). Este enfoque considera un análisis de estabilidad de pequeña señal, usando un modelo incremental alrededor de un punto de operación. El estabilizador proporciona señales de control óptimas, debido a que además de utilizar el controlador predictivo basado en modelo (Model Predictive Controller, MPC) sus parámetros se optimizan fuera de línea empleando un algoritmo de optimización por enjambre de partículas (Particle Swarm Optimization, PSO). Su comportamiento se compara con un estabilizador del sistema potencia convencional, con parámetros también optimizados con PSO fuera de línea. Para validar la metodología propuesta, se presentan numerosas simulaciones de respuestas dinámicas del SMIB, para diferentes condiciones de operación y perturbaciones. | es_ES |
dc.description.sponsorship | Este trabajo ha contado con el apoyo de CONICYT-Chile, a través del proyecto FB0809 “Centro Avanzado de Tecnología para la Minería” (AMTC)”. El segundo autor agradece el apoyo de CONICYT / FONDECYT / (N ° 3140604). | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Electrical and electronics power systems | es_ES |
dc.subject | Power system stabilizer (PSS) | es_ES |
dc.subject | Predictive power system stabilizer (PPSS) | es_ES |
dc.subject | Model predictive control (MPC) | es_ES |
dc.subject | Particle swarm optimization (PSO) | es_ES |
dc.subject | Simulation systems | es_ES |
dc.subject | Sistemas eléctricos y electrónicos de potencia | es_ES |
dc.subject | Estabilizador de sistemas de potencia (PSS) | es_ES |
dc.subject | Estabilizador predictivo de sistemas de potencia (PPSS) | es_ES |
dc.subject | Control predictivo basado en modelo (MPC) | es_ES |
dc.subject | Optimización por enjambre de partículas (PSO) | es_ES |
dc.subject | Simulación de sistemas | es_ES |
dc.title | Estabilizador de Sistemas de Potencia usando Control Predictivo basado en Modelo | es_ES |
dc.title.alternative | Power System Stabilizer based on Model Predictive Control | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2018.10056 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CONICYT//FB0809/CL/Centro Avanzado de Tecnología para la Minería/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDECYT//3140604/CL/CONTROL DISTRIBUIDO MPC PARA ESTUDIOS DE ESTABILIDAD EN SEP MINEROS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Duarte-Mermoud, MA.; Milla, F. (2018). Estabilizador de Sistemas de Potencia usando Control Predictivo basado en Modelo. Revista Iberoamericana de Automática e Informática industrial. 15(3):286-296. https://doi.org/10.4995/riai.2018.10056 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2018.10056 | es_ES |
dc.description.upvformatpinicio | 286 | es_ES |
dc.description.upvformatpfin | 296 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\10056 | es_ES |
dc.contributor.funder | Comisión Nacional de Investigación Científica y Tecnológica, Chile | es_ES |
dc.contributor.funder | Fondo Nacional de Desarrollo Científico y Tecnológico, Chile | es_ES |
dc.description.references | Abido. M.A., 2002. Optimal design of power-system stabilizers using particle swarm optimization, IEEE Transactions on Energy Conversion, vol. 17 (3), pp. 406 - 413. https://doi.org/10.1109/TEC.2002.801992 | es_ES |
dc.description.references | Bratton, D., Kennedy, J., 2007. Defining a standard for particle swarm optimization, Proceedings of the IEEE Swarm Intelligence Symposium, Honolulu, USA, pp. 120-127. https://doi.org/10.1109/SIS.2007.368035 | es_ES |
dc.description.references | Camacho, E.F., Bordons, C., 2007. Model Predictive Control. Springer-Verlag, 2 Ed. https://doi.org/10.1007/978-0-85729-398-5 | es_ES |
dc.description.references | Carlisle, A., Dozier, G., 2001. An off-the-shelf PSO. In Proceedings of the. Particle Swarm Optimization Workshop, Seoul, Korea, pp. 1- 6. | es_ES |
dc.description.references | Cazzaniga, P., Nobile, M.S., Besozzi. D., 2015. The impact of particles initialization in PSO: parameter estimation as a case in point. Proceedings of IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, Niagara Falls, Canada, pp. 1-8. https://doi.org/10.1109/CIBCB.2015.7300288 | es_ES |
dc.description.references | Chatterjee, A., Ghoshal. S.P., Mukherjee. V., 2011. Chaotic ant swarm optimization for fuzzy-based tuning of power system stabilizer. Electrical Power and Energy Systems, vol. 33 pp. 657-672. https://doi.org/10.1016/j.ijepes.2010.12.024 | es_ES |
dc.description.references | Clerc, M., The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization, in Proc. 1999 ICEC, Washington, DC, pp. 1951-1957. https://doi.org/10.1109/CEC.1999.785513 | es_ES |
dc.description.references | Clerc, M., Kennedy, J., 2002.The particle swarm - Explosion, stability, and convergence in a multidimensional complex space", IEEE Transactions on Evolutionary Computation, Vol. 6, No. 1, pp. 58-73. https://doi.org/10.1109/4235.985692 | es_ES |
dc.description.references | Del Re, L., Allgöwer, F., Glielmo, L., Guardiola, C., Kolmanovsky, I. (Eds.), 2010. Automotive Model Predictive Control: Models, Methods and Applications. Springer-Verlag. https://doi.org/10.1007/978-1-84996-071-7 | es_ES |
dc.description.references | Duarte-Mermoud, M.A., Milla, F., 2016. Model Predictive Power Stabilizer Optimized by PSO. Proceedings of IEEE ICA Conference & XXII Congress of ACCA, 19-21 October 2016, Curicó, Chile. Vol. 1, pp. 673-679. https://doi.org/10.1109/ICA-ACCA.2016.7778477 | es_ES |
dc.description.references | Eberhart, R., Kennedy, J., 1995a. A new optimiser using particle swarm theory. In: In Proceedings of the Sixth International Symposium on Micromachine and Human Science (MHS). Nagoya, Japan, pp. 39 - 43. https://doi.org/10.1109/MHS.1995.494215 | es_ES |
dc.description.references | Eberhart, R., Kennedy, J., 1995b. Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks (ICNN). Vol. 4. Piscataway, NJ, pp. 1942 - 1948. https://doi.org/10.1109/ICNN.1995.488968 | es_ES |
dc.description.references | Eberhart, R.C., Shi, Y. 2000. Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization, In Proceedings of the 2000 Congress on Evolutionary Computing, Vol. 1, pp. 84-88, 2000. https://doi.org/10.1109/CEC.2000.870279 | es_ES |
dc.description.references | Ford, J.J., Ledwich, G., Dong, Z.Y., 2008. Efficient and robust model predictive control for first swing transient stability of power systems using flexible AC transmission systems devices, Generation, Transmission & Distribution, IET, vol. 2 (5), pp.731-742. https://doi.org/10.1049/iet-gtd:20070415 | es_ES |
dc.description.references | IEEE, 2005. IEEE 421.5. "IEEE Recommended Practice for Excitation System Models for Power System Stability Studies". IEEE-SA Standards. USA. | es_ES |
dc.description.references | Kahl, M., Leibfried T., 2013. Decentralized Model Predictive Control of Electrical Power Systems. In Conference on Power Systems Transients (IPST2013) in Vancouver, Canada, Available: http://ipstconf.org/papers/Proc_IPST2013/13IPST043.pdf | es_ES |
dc.description.references | Karnik, S.R., Raju, A.B., Raviprakasha, M.S., 2009. Robust Design of Power System Stabilizer using Taguchi Technique and Particle Swarm Optimization, in Second International Conference on Emerging Trends in Engineering and Technology, Nagpur, India, vol. 1, No. 1, pp. 19-25. https://doi.org/10.1109/ICETET.2009.195 | es_ES |
dc.description.references | Kennedy J., and Eberhart. R.C., 2001. Swarm Intelligence. Morgan Kaufmann. | es_ES |
dc.description.references | Kundur P., 1994. Power system stability and control. New York: McGraw-Hill. | es_ES |
dc.description.references | Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert. P.O.M., 2000.Constrained model predictive control: stability and optimality. In Automatica, vol.36, pp.789-814. https://doi.org/10.1016/S0005-1098(99)00214-9 | es_ES |
dc.description.references | Milla, F., Duarte-Mermoud, M.A., 2016. Predictive Optimized Adaptive PSS in a Single Machine Infinite Bus. ISA Transactions. vol. 63, pp.315 - 327. https://doi.org/10.1016/j.isatra.2016.02.018 | es_ES |
dc.description.references | Ocampo-Martínez C., 2010. Model Predictive Control of Wastewater Systems. Springer-Verlag. https://doi.org/10.1007/978-1-84996-353-4 | es_ES |
dc.description.references | Phulpin, Y., Hazra, J., Ernst, D., 2011. Model predictive control of HVDC power flow to improve transient stability in power systems. In IEEE International Conference on Smart Grid Communications (SmartGridComm), Brussels, pp. 593 - 598. https://doi.org/10.1109/SmartGridComm.2011.6102391 | es_ES |
dc.description.references | Rajkumar, V., Mohler, R.R., 1994. Nonlinear predictive control for the damping of multimachine power system transients using FACTS devices, In Proceedings of the 33rd Conference on Decision and Control, Lake Buena Vista, Florida, USA, vol. 4. pp. 4074 - 4079. https://doi.org/10.1109/CDC.1994.411582 | es_ES |
dc.description.references | Sebaa, K., Moulahoum, S., Houassine H., and Kabache,, N. 2012. Model Predictive Control to improve the power system stability. In 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, Rumania, pp. 208 - 212. https://doi.org/10.1109/OPTIM.2012.6231972 | es_ES |
dc.description.references | Shahriar, M.S., Ahmed, M.A., Ullah, M.S., 2012. Design and Analysis of a Model Predictive Unified Power Flow Controller (MPUPFC) for Power System Stability Assessment. International Journal of Electrical & Computer Sciences IJECS-IJENS vol: 12 No: 04 | es_ES |
dc.description.references | Shi, Y., EberhartR.C., 1998. A modified particle swarm optimizer, in Proc. of the IEEE International Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, Anchorage, USA: pp. 69-73, May 1998 | es_ES |
dc.description.references | Wang, L., Cheung, H., Hamlyn, A., Cheung. R., 2009. Model prediction adaptive control of inter-area oscillations in multi-generators power systems. In Power & Energy Society General Meeting, Toronto, Canada. pp. 1 - 7. https://doi.org/10.1109/PES.2009.5275685 | es_ES |
dc.description.references | Zambrano-Bigiarini, M., Clerc, M., Rojas. R., 2013. Standard Particle Swarm Optimization 2011 at CEC-2013: A baseline for future PSO improvements. In Evolutionary Computation (CEC), IEEE Congress, New York, USA, pp. 2337-2344. | es_ES |
dc.description.references | Zheng, T. Ed., 2011.Advanced Model Predictive Control. InTech. https://doi.org/10.5772/685 | es_ES |