- -

Estabilizador de Sistemas de Potencia usando Control Predictivo basado en Modelo

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estabilizador de Sistemas de Potencia usando Control Predictivo basado en Modelo

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Duarte-Mermoud, Manuel A es_ES
dc.contributor.author Milla, Freddy es_ES
dc.date.accessioned 2020-05-13T19:24:38Z
dc.date.available 2020-05-13T19:24:38Z
dc.date.issued 2018-06-22
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143090
dc.description.abstract [EN] A model predictive power system stabilizer is proposed in this paper to damp power oscillations in an electric power system (EPS). The design of the stabilizer is optimal in the sense that its parameters are determined by using off-line particle swarm optimization (PSO) technique. The proposed methodology is applied to an EPS composed by a single machine connected to an infinite bus (SMIB). The analysis is performed through a small signal stability analysis, deriving incremental equations linearized around an operating point. The results obtained by the proposed method are compared with a conventional power system stabilizer, also optimized by PSO. Through numerous computer simulations under different operating conditions andperturbations on the SMIB, it was possible to establish some advantages of the proposed technique as compared with the conventional technique. es_ES
dc.description.abstract [ES] Se propone un estabilizador de potencia predictivo para amortiguar oscilaciones de potencia en un sistema eléctrico de potencia(SEP) formado por una sola máquina conectada a una barra infinita (Single Machine Infinite Bus, SMIB). Este enfoque considera un análisis de estabilidad de pequeña señal, usando un modelo incremental alrededor de un punto de operación. El estabilizador proporciona señales de control óptimas, debido a que además de utilizar el controlador predictivo basado en modelo (Model Predictive Controller, MPC) sus parámetros se optimizan fuera de línea empleando un algoritmo de optimización por enjambre de partículas (Particle Swarm Optimization, PSO). Su comportamiento se compara con un estabilizador del sistema potencia convencional, con parámetros también optimizados con PSO fuera de línea. Para validar la metodología propuesta, se presentan numerosas simulaciones de respuestas dinámicas del SMIB, para diferentes condiciones de operación y perturbaciones. es_ES
dc.description.sponsorship Este trabajo ha contado con el apoyo de CONICYT-Chile, a través del proyecto FB0809 “Centro Avanzado de Tecnología para la Minería” (AMTC)”. El segundo autor agradece el apoyo de CONICYT / FONDECYT / (N ° 3140604). es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Electrical and electronics power systems es_ES
dc.subject Power system stabilizer (PSS) es_ES
dc.subject Predictive power system stabilizer (PPSS) es_ES
dc.subject Model predictive control (MPC) es_ES
dc.subject Particle swarm optimization (PSO) es_ES
dc.subject Simulation systems es_ES
dc.subject Sistemas eléctricos y electrónicos de potencia es_ES
dc.subject Estabilizador de sistemas de potencia (PSS) es_ES
dc.subject Estabilizador predictivo de sistemas de potencia (PPSS) es_ES
dc.subject Control predictivo basado en modelo (MPC) es_ES
dc.subject Optimización por enjambre de partículas (PSO) es_ES
dc.subject Simulación de sistemas es_ES
dc.title Estabilizador de Sistemas de Potencia usando Control Predictivo basado en Modelo es_ES
dc.title.alternative Power System Stabilizer based on Model Predictive Control es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2018.10056
dc.relation.projectID info:eu-repo/grantAgreement/CONICYT//FB0809/CL/Centro Avanzado de Tecnología para la Minería/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//3140604/CL/CONTROL DISTRIBUIDO MPC PARA ESTUDIOS DE ESTABILIDAD EN SEP MINEROS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Duarte-Mermoud, MA.; Milla, F. (2018). Estabilizador de Sistemas de Potencia usando Control Predictivo basado en Modelo. Revista Iberoamericana de Automática e Informática industrial. 15(3):286-296. https://doi.org/10.4995/riai.2018.10056 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2018.10056 es_ES
dc.description.upvformatpinicio 286 es_ES
dc.description.upvformatpfin 296 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\10056 es_ES
dc.contributor.funder Comisión Nacional de Investigación Científica y Tecnológica, Chile es_ES
dc.contributor.funder Fondo Nacional de Desarrollo Científico y Tecnológico, Chile es_ES
dc.description.references Abido. M.A., 2002. Optimal design of power-system stabilizers using particle swarm optimization, IEEE Transactions on Energy Conversion, vol. 17 (3), pp. 406 - 413. https://doi.org/10.1109/TEC.2002.801992 es_ES
dc.description.references Bratton, D., Kennedy, J., 2007. Defining a standard for particle swarm optimization, Proceedings of the IEEE Swarm Intelligence Symposium, Honolulu, USA, pp. 120-127. https://doi.org/10.1109/SIS.2007.368035 es_ES
dc.description.references Camacho, E.F., Bordons, C., 2007. Model Predictive Control. Springer-Verlag, 2 Ed. https://doi.org/10.1007/978-0-85729-398-5 es_ES
dc.description.references Carlisle, A., Dozier, G., 2001. An off-the-shelf PSO. In Proceedings of the. Particle Swarm Optimization Workshop, Seoul, Korea, pp. 1- 6. es_ES
dc.description.references Cazzaniga, P., Nobile, M.S., Besozzi. D., 2015. The impact of particles initialization in PSO: parameter estimation as a case in point. Proceedings of IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, Niagara Falls, Canada, pp. 1-8. https://doi.org/10.1109/CIBCB.2015.7300288 es_ES
dc.description.references Chatterjee, A., Ghoshal. S.P., Mukherjee. V., 2011. Chaotic ant swarm optimization for fuzzy-based tuning of power system stabilizer. Electrical Power and Energy Systems, vol. 33 pp. 657-672. https://doi.org/10.1016/j.ijepes.2010.12.024 es_ES
dc.description.references Clerc, M., The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization, in Proc. 1999 ICEC, Washington, DC, pp. 1951-1957. https://doi.org/10.1109/CEC.1999.785513 es_ES
dc.description.references Clerc, M., Kennedy, J., 2002.The particle swarm - Explosion, stability, and convergence in a multidimensional complex space", IEEE Transactions on Evolutionary Computation, Vol. 6, No. 1, pp. 58-73. https://doi.org/10.1109/4235.985692 es_ES
dc.description.references Del Re, L., Allgöwer, F., Glielmo, L., Guardiola, C., Kolmanovsky, I. (Eds.), 2010. Automotive Model Predictive Control: Models, Methods and Applications. Springer-Verlag. https://doi.org/10.1007/978-1-84996-071-7 es_ES
dc.description.references Duarte-Mermoud, M.A., Milla, F., 2016. Model Predictive Power Stabilizer Optimized by PSO. Proceedings of IEEE ICA Conference & XXII Congress of ACCA, 19-21 October 2016, Curicó, Chile. Vol. 1, pp. 673-679. https://doi.org/10.1109/ICA-ACCA.2016.7778477 es_ES
dc.description.references Eberhart, R., Kennedy, J., 1995a. A new optimiser using particle swarm theory. In: In Proceedings of the Sixth International Symposium on Micromachine and Human Science (MHS). Nagoya, Japan, pp. 39 - 43. https://doi.org/10.1109/MHS.1995.494215 es_ES
dc.description.references Eberhart, R., Kennedy, J., 1995b. Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks (ICNN). Vol. 4. Piscataway, NJ, pp. 1942 - 1948. https://doi.org/10.1109/ICNN.1995.488968 es_ES
dc.description.references Eberhart, R.C., Shi, Y. 2000. Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization, In Proceedings of the 2000 Congress on Evolutionary Computing, Vol. 1, pp. 84-88, 2000. https://doi.org/10.1109/CEC.2000.870279 es_ES
dc.description.references Ford, J.J., Ledwich, G., Dong, Z.Y., 2008. Efficient and robust model predictive control for first swing transient stability of power systems using flexible AC transmission systems devices, Generation, Transmission & Distribution, IET, vol. 2 (5), pp.731-742. https://doi.org/10.1049/iet-gtd:20070415 es_ES
dc.description.references IEEE, 2005. IEEE 421.5. "IEEE Recommended Practice for Excitation System Models for Power System Stability Studies". IEEE-SA Standards. USA. es_ES
dc.description.references Kahl, M., Leibfried T., 2013. Decentralized Model Predictive Control of Electrical Power Systems. In Conference on Power Systems Transients (IPST2013) in Vancouver, Canada, Available: http://ipstconf.org/papers/Proc_IPST2013/13IPST043.pdf es_ES
dc.description.references Karnik, S.R., Raju, A.B., Raviprakasha, M.S., 2009. Robust Design of Power System Stabilizer using Taguchi Technique and Particle Swarm Optimization, in Second International Conference on Emerging Trends in Engineering and Technology, Nagpur, India, vol. 1, No. 1, pp. 19-25. https://doi.org/10.1109/ICETET.2009.195 es_ES
dc.description.references Kennedy J., and Eberhart. R.C., 2001. Swarm Intelligence. Morgan Kaufmann. es_ES
dc.description.references Kundur P., 1994. Power system stability and control. New York: McGraw-Hill. es_ES
dc.description.references Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert. P.O.M., 2000.Constrained model predictive control: stability and optimality. In Automatica, vol.36, pp.789-814. https://doi.org/10.1016/S0005-1098(99)00214-9 es_ES
dc.description.references Milla, F., Duarte-Mermoud, M.A., 2016. Predictive Optimized Adaptive PSS in a Single Machine Infinite Bus. ISA Transactions. vol. 63, pp.315 - 327. https://doi.org/10.1016/j.isatra.2016.02.018 es_ES
dc.description.references Ocampo-Martínez C., 2010. Model Predictive Control of Wastewater Systems. Springer-Verlag. https://doi.org/10.1007/978-1-84996-353-4 es_ES
dc.description.references Phulpin, Y., Hazra, J., Ernst, D., 2011. Model predictive control of HVDC power flow to improve transient stability in power systems. In IEEE International Conference on Smart Grid Communications (SmartGridComm), Brussels, pp. 593 - 598. https://doi.org/10.1109/SmartGridComm.2011.6102391 es_ES
dc.description.references Rajkumar, V., Mohler, R.R., 1994. Nonlinear predictive control for the damping of multimachine power system transients using FACTS devices, In Proceedings of the 33rd Conference on Decision and Control, Lake Buena Vista, Florida, USA, vol. 4. pp. 4074 - 4079. https://doi.org/10.1109/CDC.1994.411582 es_ES
dc.description.references Sebaa, K., Moulahoum, S., Houassine H., and Kabache,, N. 2012. Model Predictive Control to improve the power system stability. In 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, Rumania, pp. 208 - 212. https://doi.org/10.1109/OPTIM.2012.6231972 es_ES
dc.description.references Shahriar, M.S., Ahmed, M.A., Ullah, M.S., 2012. Design and Analysis of a Model Predictive Unified Power Flow Controller (MPUPFC) for Power System Stability Assessment. International Journal of Electrical & Computer Sciences IJECS-IJENS vol: 12 No: 04 es_ES
dc.description.references Shi, Y., EberhartR.C., 1998. A modified particle swarm optimizer, in Proc. of the IEEE International Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, Anchorage, USA: pp. 69-73, May 1998 es_ES
dc.description.references Wang, L., Cheung, H., Hamlyn, A., Cheung. R., 2009. Model prediction adaptive control of inter-area oscillations in multi-generators power systems. In Power & Energy Society General Meeting, Toronto, Canada. pp. 1 - 7. https://doi.org/10.1109/PES.2009.5275685 es_ES
dc.description.references Zambrano-Bigiarini, M., Clerc, M., Rojas. R., 2013. Standard Particle Swarm Optimization 2011 at CEC-2013: A baseline for future PSO improvements. In Evolutionary Computation (CEC), IEEE Congress, New York, USA, pp. 2337-2344. es_ES
dc.description.references Zheng, T. Ed., 2011.Advanced Model Predictive Control. InTech. https://doi.org/10.5772/685 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem