- -

Estabilizador de Sistemas de Potencia usando Control Predictivo basado en Modelo

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estabilizador de Sistemas de Potencia usando Control Predictivo basado en Modelo

Mostrar el registro completo del ítem

Duarte-Mermoud, MA.; Milla, F. (2018). Estabilizador de Sistemas de Potencia usando Control Predictivo basado en Modelo. Revista Iberoamericana de Automática e Informática industrial. 15(3):286-296. https://doi.org/10.4995/riai.2018.10056

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143090

Ficheros en el ítem

Metadatos del ítem

Título: Estabilizador de Sistemas de Potencia usando Control Predictivo basado en Modelo
Otro titulo: Power System Stabilizer based on Model Predictive Control
Autor: Duarte-Mermoud, Manuel A Milla, Freddy
Fecha difusión:
Resumen:
[EN] A model predictive power system stabilizer is proposed in this paper to damp power oscillations in an electric power system (EPS). The design of the stabilizer is optimal in the sense that its parameters are determined ...[+]


[ES] Se propone un estabilizador de potencia predictivo para amortiguar oscilaciones de potencia en un sistema eléctrico de potencia(SEP) formado por una sola máquina conectada a una barra infinita (Single Machine Infinite ...[+]
Palabras clave: Electrical and electronics power systems , Power system stabilizer (PSS) , Predictive power system stabilizer (PPSS) , Model predictive control (MPC) , Particle swarm optimization (PSO) , Simulation systems , Sistemas eléctricos y electrónicos de potencia , Estabilizador de sistemas de potencia (PSS) , Estabilizador predictivo de sistemas de potencia (PPSS) , Control predictivo basado en modelo (MPC) , Optimización por enjambre de partículas (PSO) , Simulación de sistemas
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2018.10056
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2018.10056
Código del Proyecto:
info:eu-repo/grantAgreement/CONICYT//FB0809/CL/Centro Avanzado de Tecnología para la Minería/
info:eu-repo/grantAgreement/FONDECYT//3140604/CL/CONTROL DISTRIBUIDO MPC PARA ESTUDIOS DE ESTABILIDAD EN SEP MINEROS/
Agradecimientos:
Este trabajo ha contado con el apoyo de CONICYT-Chile, a través del proyecto FB0809 “Centro Avanzado de Tecnología para la Minería” (AMTC)”. El segundo autor agradece el apoyo de CONICYT / FONDECYT / (N ° 3140604).
Tipo: Artículo

References

Abido. M.A., 2002. Optimal design of power-system stabilizers using particle swarm optimization, IEEE Transactions on Energy Conversion, vol. 17 (3), pp. 406 - 413. https://doi.org/10.1109/TEC.2002.801992

Bratton, D., Kennedy, J., 2007. Defining a standard for particle swarm optimization, Proceedings of the IEEE Swarm Intelligence Symposium, Honolulu, USA, pp. 120-127. https://doi.org/10.1109/SIS.2007.368035

Camacho, E.F., Bordons, C., 2007. Model Predictive Control. Springer-Verlag, 2 Ed. https://doi.org/10.1007/978-0-85729-398-5 [+]
Abido. M.A., 2002. Optimal design of power-system stabilizers using particle swarm optimization, IEEE Transactions on Energy Conversion, vol. 17 (3), pp. 406 - 413. https://doi.org/10.1109/TEC.2002.801992

Bratton, D., Kennedy, J., 2007. Defining a standard for particle swarm optimization, Proceedings of the IEEE Swarm Intelligence Symposium, Honolulu, USA, pp. 120-127. https://doi.org/10.1109/SIS.2007.368035

Camacho, E.F., Bordons, C., 2007. Model Predictive Control. Springer-Verlag, 2 Ed. https://doi.org/10.1007/978-0-85729-398-5

Carlisle, A., Dozier, G., 2001. An off-the-shelf PSO. In Proceedings of the. Particle Swarm Optimization Workshop, Seoul, Korea, pp. 1- 6.

Cazzaniga, P., Nobile, M.S., Besozzi. D., 2015. The impact of particles initialization in PSO: parameter estimation as a case in point. Proceedings of IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, Niagara Falls, Canada, pp. 1-8. https://doi.org/10.1109/CIBCB.2015.7300288

Chatterjee, A., Ghoshal. S.P., Mukherjee. V., 2011. Chaotic ant swarm optimization for fuzzy-based tuning of power system stabilizer. Electrical Power and Energy Systems, vol. 33 pp. 657-672. https://doi.org/10.1016/j.ijepes.2010.12.024

Clerc, M., The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization, in Proc. 1999 ICEC, Washington, DC, pp. 1951-1957. https://doi.org/10.1109/CEC.1999.785513

Clerc, M., Kennedy, J., 2002.The particle swarm - Explosion, stability, and convergence in a multidimensional complex space", IEEE Transactions on Evolutionary Computation, Vol. 6, No. 1, pp. 58-73. https://doi.org/10.1109/4235.985692

Del Re, L., Allgöwer, F., Glielmo, L., Guardiola, C., Kolmanovsky, I. (Eds.), 2010. Automotive Model Predictive Control: Models, Methods and Applications. Springer-Verlag. https://doi.org/10.1007/978-1-84996-071-7

Duarte-Mermoud, M.A., Milla, F., 2016. Model Predictive Power Stabilizer Optimized by PSO. Proceedings of IEEE ICA Conference & XXII Congress of ACCA, 19-21 October 2016, Curicó, Chile. Vol. 1, pp. 673-679. https://doi.org/10.1109/ICA-ACCA.2016.7778477

Eberhart, R., Kennedy, J., 1995a. A new optimiser using particle swarm theory. In: In Proceedings of the Sixth International Symposium on Micromachine and Human Science (MHS). Nagoya, Japan, pp. 39 - 43. https://doi.org/10.1109/MHS.1995.494215

Eberhart, R., Kennedy, J., 1995b. Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks (ICNN). Vol. 4. Piscataway, NJ, pp. 1942 - 1948. https://doi.org/10.1109/ICNN.1995.488968

Eberhart, R.C., Shi, Y. 2000. Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization, In Proceedings of the 2000 Congress on Evolutionary Computing, Vol. 1, pp. 84-88, 2000. https://doi.org/10.1109/CEC.2000.870279

Ford, J.J., Ledwich, G., Dong, Z.Y., 2008. Efficient and robust model predictive control for first swing transient stability of power systems using flexible AC transmission systems devices, Generation, Transmission & Distribution, IET, vol. 2 (5), pp.731-742. https://doi.org/10.1049/iet-gtd:20070415

IEEE, 2005. IEEE 421.5. "IEEE Recommended Practice for Excitation System Models for Power System Stability Studies". IEEE-SA Standards. USA.

Kahl, M., Leibfried T., 2013. Decentralized Model Predictive Control of Electrical Power Systems. In Conference on Power Systems Transients (IPST2013) in Vancouver, Canada, Available: http://ipstconf.org/papers/Proc_IPST2013/13IPST043.pdf

Karnik, S.R., Raju, A.B., Raviprakasha, M.S., 2009. Robust Design of Power System Stabilizer using Taguchi Technique and Particle Swarm Optimization, in Second International Conference on Emerging Trends in Engineering and Technology, Nagpur, India, vol. 1, No. 1, pp. 19-25. https://doi.org/10.1109/ICETET.2009.195

Kennedy J., and Eberhart. R.C., 2001. Swarm Intelligence. Morgan Kaufmann.

Kundur P., 1994. Power system stability and control. New York: McGraw-Hill.

Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert. P.O.M., 2000.Constrained model predictive control: stability and optimality. In Automatica, vol.36, pp.789-814. https://doi.org/10.1016/S0005-1098(99)00214-9

Milla, F., Duarte-Mermoud, M.A., 2016. Predictive Optimized Adaptive PSS in a Single Machine Infinite Bus. ISA Transactions. vol. 63, pp.315 - 327. https://doi.org/10.1016/j.isatra.2016.02.018

Ocampo-Martínez C., 2010. Model Predictive Control of Wastewater Systems. Springer-Verlag. https://doi.org/10.1007/978-1-84996-353-4

Phulpin, Y., Hazra, J., Ernst, D., 2011. Model predictive control of HVDC power flow to improve transient stability in power systems. In IEEE International Conference on Smart Grid Communications (SmartGridComm), Brussels, pp. 593 - 598. https://doi.org/10.1109/SmartGridComm.2011.6102391

Rajkumar, V., Mohler, R.R., 1994. Nonlinear predictive control for the damping of multimachine power system transients using FACTS devices, In Proceedings of the 33rd Conference on Decision and Control, Lake Buena Vista, Florida, USA, vol. 4. pp. 4074 - 4079. https://doi.org/10.1109/CDC.1994.411582

Sebaa, K., Moulahoum, S., Houassine H., and Kabache,, N. 2012. Model Predictive Control to improve the power system stability. In 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, Rumania, pp. 208 - 212. https://doi.org/10.1109/OPTIM.2012.6231972

Shahriar, M.S., Ahmed, M.A., Ullah, M.S., 2012. Design and Analysis of a Model Predictive Unified Power Flow Controller (MPUPFC) for Power System Stability Assessment. International Journal of Electrical & Computer Sciences IJECS-IJENS vol: 12 No: 04

Shi, Y., EberhartR.C., 1998. A modified particle swarm optimizer, in Proc. of the IEEE International Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, Anchorage, USA: pp. 69-73, May 1998

Wang, L., Cheung, H., Hamlyn, A., Cheung. R., 2009. Model prediction adaptive control of inter-area oscillations in multi-generators power systems. In Power & Energy Society General Meeting, Toronto, Canada. pp. 1 - 7. https://doi.org/10.1109/PES.2009.5275685

Zambrano-Bigiarini, M., Clerc, M., Rojas. R., 2013. Standard Particle Swarm Optimization 2011 at CEC-2013: A baseline for future PSO improvements. In Evolutionary Computation (CEC), IEEE Congress, New York, USA, pp. 2337-2344.

Zheng, T. Ed., 2011.Advanced Model Predictive Control. InTech. https://doi.org/10.5772/685

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem