- -

Evaluación Neurofisiológica del Entrenamiento de la Imaginación Motora con Realidad Virtual en Pacientes Pediátricos con Parálisis Cerebral

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluación Neurofisiológica del Entrenamiento de la Imaginación Motora con Realidad Virtual en Pacientes Pediátricos con Parálisis Cerebral

Mostrar el registro completo del ítem

Del Castillo, M.; Serrano, J.; Lerma, S.; Martínez, I.; Rocon, E. (2018). Evaluación Neurofisiológica del Entrenamiento de la Imaginación Motora con Realidad Virtual en Pacientes Pediátricos con Parálisis Cerebral. Revista Iberoamericana de Automática e Informática industrial. 15(2):174-179. https://doi.org/10.4995/riai.2017.8819

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143163

Ficheros en el ítem

Metadatos del ítem

Título: Evaluación Neurofisiológica del Entrenamiento de la Imaginación Motora con Realidad Virtual en Pacientes Pediátricos con Parálisis Cerebral
Otro titulo: Neurophysiologic Assessment of Motor Imagery Training by Using Virtual Reality for Pediatric Population with Cerebral Palsy
Autor: Del Castillo, M.D. Serrano, J.I. Lerma, S. Martínez, I. Rocon, E
Fecha difusión:
Resumen:
[ES] Existen diversas evidencias que indican que los déficits motores en los pacientes de parálisis cerebral se asocian con problemas en la planificación motora que, a su vez, apuntan a una mermada capacidad para imaginar ...[+]


[EN] There are several evidences showing that motor disorders in patients with cerebral palsy are associated with problems in motor planning, which, in turn, denote a diminished capability to imagine movements. Motor imagery ...[+]
Palabras clave: Bioengineering , Disability , Interfaces , Virtual Reality , Rehabilitation , Motor Imagery , EEG , Bioingeniería , Discapacidad , Realidad Virtual , Rehabilitación , Imaginación Motora
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2017.8819
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2017.8819
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2012-39133-C03-01/ES/PLATAFORMA ROBOTICA PARA LA REHABILITACION, COMPENSACION FUNCIONAL Y ENTRENAMIENTO DE LA MARCHA EN PACIENTES CON PARALISIS CEREBRAL/
info:eu-repo/grantAgreement/MINECO//DPI2015-68664-C4-1-R/ES/DESARROLLO Y VALIDACION CLINICA DE UNA PLATAFORMA DE REHABILITACION BASADA EN NEUROMODULACION PARA PACIENTES CON TRASTORNOS DEL CONTROL MOTOR/
Agradecimientos:
Este trabajo ha sido financiado parcialmente por los proyectos CP-WALKER (DPI2012-39133-C03-01), MD (PIE201650E055) y NeuroMOD (DPI2015-68664-C4-1-R)
Tipo: Artículo

References

Bayón, C., Ramírez, O., Serrano, J.I., del Castillo, M.D., Pérez-Somarriba, A., Belda-Lois, J.M., Martínez-Caballero, I., Lerma-Lara, S., Cifuentes, C., Frizera, A., Rocon, E., 2017. Development and evaluation of a novel robotic platform for gait rehabilitation in patients with cerebral palsy: CPWalker. Robotics and Autonomous Systems, 91, 101-114. https://doi.org/10.1016/j.robot.2016.12.015

Blair, E., 2010. Epidemiology of the cerebral palsies. Orthopedic Clinics of North America, 41, 441-55. https://doi.org/10.1016/j.ocl.2010.06.004

Chang, M.C., Kim, D.Y., Park, D.H., 2015. Enhancement of cortical excitability and lower limb motor function in patients with stroke by transcranial direct current stimulation. Brain Stimulation, 8(3), 561-566. https://doi.org/10.1016/j.brs.2015.01.411 [+]
Bayón, C., Ramírez, O., Serrano, J.I., del Castillo, M.D., Pérez-Somarriba, A., Belda-Lois, J.M., Martínez-Caballero, I., Lerma-Lara, S., Cifuentes, C., Frizera, A., Rocon, E., 2017. Development and evaluation of a novel robotic platform for gait rehabilitation in patients with cerebral palsy: CPWalker. Robotics and Autonomous Systems, 91, 101-114. https://doi.org/10.1016/j.robot.2016.12.015

Blair, E., 2010. Epidemiology of the cerebral palsies. Orthopedic Clinics of North America, 41, 441-55. https://doi.org/10.1016/j.ocl.2010.06.004

Chang, M.C., Kim, D.Y., Park, D.H., 2015. Enhancement of cortical excitability and lower limb motor function in patients with stroke by transcranial direct current stimulation. Brain Stimulation, 8(3), 561-566. https://doi.org/10.1016/j.brs.2015.01.411

Crajé, C., van Elk, M., Beeren, M., van Schie, H.T., Bekkering, H., Steenbergen, B., 2010. Compromised motor planning and motor imagery in right hemiparetic cerebral palsy. Research in Developmental Disabilities, 3186, 1313-1322. https://doi.org/10.1016/j.ridd.2010.07.010

Iosa, M., Zocolillo, L., Montesi, M., Morelli, D., Paolucci, S., Fusco, A., 2014. The brain's sense of walking: a study on the intertwine between locomotor imagery and internal locomotor models in healthy adults, typically developing children and children with cerebral palsy. Frontiers in Human Neuroscience, 8(359), 1-9. https://doi.org/10.3389/fnhum.2014.00859

Labruyère, R., Gerber, C.N., Birrer‐Brütsch, K., Meyer‐Heim, A., van Hedel, H., 2013. Requirements for and impact of a serious game for neuro‐pediatric robot‐assisted gait training. Research in Developmental Disabilities, 34, 3906-3915. https://doi.org/10.1016/j.ridd.2013.07.031

Laver, K., George, S., Thomas, S., Deutsch, JE., Crotty, M., 2012. Cochrane review: virtual reality for stroke rehabilitation. European Journal of Physical and Rehabilitation Medicine, 48(3), 523-530.

Lerma, S., del Castillo, M.D., Serrano, J.I., Rocon, E., Raya, R., Martínez, I., 2015. EEG control of gait in children with cerebral palsy. Preliminary data for the construction of a brain computer interface. Gait & Posture 42, S42. https://doi.org/10.1016/j.gaitpost.2015.06.082

Meyer-Heim, A., van Hedel, HJA., 2013. Robot-assisted and computer-enhanced therapies for children with cerebral palsy: current state and slinical implementation. Seminars in Pediatric Neurology, 02, 139-145. https://doi.org/10.1016/j.spen.2013.06.006

Mullen, T., Kothe, C., Chi, Y.M., Ojeda, A., Kerth, T., Makeig, S., Cauwenberghs, G., Jung, T.-P., 2013. Real-time modeling and 3d visualization of source dynamics and connectivity using wearable EEG. In Procceedings of IEEE EMBS, 2013, pp. 2184-2187.

Mutsaarts, M., Steenbergen, B., Bekkering, H., 2007. Impaired motor imagery in right hemiparetic cerebral palsy. Experimental Brain Research, 172, 151-162. https://doi.org/10.1007/s00221-005-0327-0

Niazi, I.K., Mrachacz-Kersting, N., Jiang, N., Dremstrup, K., Farina, D., 2012. Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(4), 595-604. https://doi.org/10.1109/TNSRE.2012.2194309

Pfurtscheller, G., da Silva, F. H. L. 1999. Event-related EEG/EMG synchronization and desynchronization: basic principles, Clinical Neurophysiology, 110, 1842-1857. https://doi.org/10.1016/S1388-2457(99)00141-8

Ridderinkhof, KR., Brass, M., 2015. How kinesthetic motor Imagery works: a predictive-processing theory of visualization in sports and motor expertise. Journal of Physiology, 109, 35-63. https://doi.org/10.1016/j.jphysparis.2015.02.003

Rose, FD., Brooks, BM., Rizzo A., 2005. Virtual reality in brain damage rehabilitation: review. Cyberpsychology Behavior, 8(3), 241-62. https://doi.org/10.1089/cpb.2005.8.241

Sharma, N., Baron, JC., 2013. Does motor imagery share neural networks with executed movement: a multivariate fMRI analysis. Frontiers in Human Neuroscience, 7:564. https://doi.org/10.3389/fnhum.2013.00564

Shin, Y.K., Lee, D.R., Hwang, H.J., You, S.J., Im, C.H., 2012. A novel EEG-based brain mapping to determine cortical activation patterns in normal children and children with cerebral palsy during motor imagery tasks. Neurorehabilitation, 31(4), 349-355. DOI: 10.3233/NRE-2012-00803

Spruijt, S., ven der Kamp, J., Steenbergen, B., 2015. Current insights in the development of children's motor imagery ability. Research in Developmental Disabilities, 34, 4154-60. https://doi.org/10.1016/j.ridd.2013.08.044

Weiss, P.L., Keshner, EA., Levin, M.F. (eds.), 2014. Virtual Reality for Physical and Motor Rehabilitation, Springer. https://doi.org/10.1007/978-1-4939-0968-1

Winkler, I., Haufe, S., Tangermann, M., 2011. Automatic classification of artifactual ICA-Components for artifact removal in EEG signals. Behavioral and Brain Functions, 7(30), 1-15. https://doi.org/10.1186/1744-9081-7-30

You, S.H., Jang, S.H., Kim, Y.H., Hallett, M., Ahn, S.H., Kwon, Y.H., Kim, J.H, Lee, M.Y., 2005. Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke, 36(6), 1166-1171. https://doi.org/10.1161/01.STR.0000162715.43417.91

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem