- -

Modelado Dinámico y Control de un Dispositivo Sumergido Provisto de Actuadores Hidrostáticos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelado Dinámico y Control de un Dispositivo Sumergido Provisto de Actuadores Hidrostáticos

Mostrar el registro completo del ítem

Pérez De La Portilla, M.; López Piñeiro, A.; Somolinos Sánchez, JA.; Morales Herrera, R. (2017). Modelado Dinámico y Control de un Dispositivo Sumergido Provisto de Actuadores Hidrostáticos. Revista Iberoamericana de Automática e Informática industrial. 15(1):12-23. https://doi.org/10.4995/riai.2017.8824

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143217

Ficheros en el ítem

Metadatos del ítem

Título: Modelado Dinámico y Control de un Dispositivo Sumergido Provisto de Actuadores Hidrostáticos
Otro titulo: Dynamic Modelling and Control of a Submerged Device with Hydrostatic Actuators
Autor: Pérez de la Portilla, Marina López Piñeiro, Amable Somolinos Sánchez, José Andrés Morales Herrera, Rafael
Fecha difusión:
Resumen:
[ES] Las corrientes marinas, fuente de energía renovable más predecible, localizan la mayor parte de su energía en altas profundidades. Para aprovechar esta energía se están desarrollando dispositivos flotantes, de tipo ...[+]


[EN] Marine currents represent the most predictable source of renewable energy. The greatest percentage of its energy is located in areas with high depths. In order to be able to operate at these depths, new devices are ...[+]
Palabras clave: Renewable Energies , Marine Systems , Multivariable Control Systems , Time varying systems , OrcaFlex-Matlab Integration , Energías Renovables , Sistemas Marinos , Control Multivariable , Sistemas variables con el tiempo , Integración OrcaFlex-Matlab
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2017.8824
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2017.8824
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2014-53499-R/ES/CONTROL DE OPERACIONES DE DISPOSITIVOS MARINOS DE APROVECHAMIENTO DE LA ENERGIA HIDROCINETICA/
Agradecimientos:
Este trabajo se ha realizado con financiación parcial del Mº de Ciencia e Innovación, a través del Proyecto de Investigación. Fundamental DPI2014-53499-R CoDMAEC.
Tipo: Artículo

References

Bahaj, A.S., 2011. Generating electricity from the oceans. Renewable & Sustainable Energy Reviews. 15, pp. 3399-3416. https://doi.org/10.1016/j.rser.2011.04.032

Brito A., y Villate J.L., 2014. Implementing Agreement on Ocean Energy Systems. (OES-IEA).

Clément, A, y otros, 2002. Wave energy in Europe: current status and perspectives. Renewable & Sustainable Energy Reviews. 6, pp 405-431. https://doi.org/10.1016/S1364-0321(02)00009-6 [+]
Bahaj, A.S., 2011. Generating electricity from the oceans. Renewable & Sustainable Energy Reviews. 15, pp. 3399-3416. https://doi.org/10.1016/j.rser.2011.04.032

Brito A., y Villate J.L., 2014. Implementing Agreement on Ocean Energy Systems. (OES-IEA).

Clément, A, y otros, 2002. Wave energy in Europe: current status and perspectives. Renewable & Sustainable Energy Reviews. 6, pp 405-431. https://doi.org/10.1016/S1364-0321(02)00009-6

De la Cruz, J. M. y otros, 2012. Automática marina: una revisión desde el punto de vista del control. Revista Iberoamericana de Automática e Informática Industrial (RIAI), vol 9, nº3, pp 205-218. https://doi.org/10.1016/j.riai.2012.05.001

FORCE, 2016 web page. Disponible online: http://fundyforce.ca/renewableand-predictable/ (accedido el 22 de noviembre de 2016).

García, E. y otros, 2016. Recursos y sistemas energéticos renovables del entorno marino y sus requerimientos de control. Revista Iberoamericana de Automática e Informática Industrial (RIAI), vol. 13, nº2, pp 141-161. https://doi.org/10.1016/j.riai.2016.03.002

Guedes, C. y otros, 2012. Review and classification of wave energy converters. Maritime Engineering and Technology. Taylor & Francis Group: USA, 2012, pp. 585-594

Hardisty J., 2009. The Analysis of Tidal Stream Power. Wiley. https://doi.org/10.1002/9780470743119

Khan J. y Bhuyan, G., 2009. Ocean Energy Global Technology, Development Status, Final Technical Report, IEA-OES.

King J. y Tryfonas, T., 2009. Tidal stream power technology-state of the art. Preceedings of the IEEE (OCEANS '09), pp 1-8, Bremen, Germany. https://doi.org/10.1109/OCEANSE.2009.5278329

López, A., 2007. Sistema sumergible para el aprovechamiento energético de las corrientes marinas. Concesión ES2341311-B2. Julio 2008.

López, A. y otros, 2011. Dynamic behaviour of a second generation hydrokinetic converter. Proceedings IEEE International Conference on Oceanic Engineering (OCEANS'11), Santander, Espa-a.

López, A., y otros, 2013a. Inertial Behavior of Offshore Devices. Proceedings 5th International Workshop on Marine Technology (MARTECH'13), Girona, Espa-a.

López A. y otros, 2013b. Review of wave energy technologies and the necessary power-equipment. Renewable & Sustainable Energy Reviews. 27, pp 413-434. https://doi.org/10.1016/j.rser.2013.07.009

López A., y otros, 2014. Modelado Energético de Convertidores Primarios para el Aprovechamiento de las Energías Renovables Marinas. RIAI- Revista Iberoamericana de Automática e Informática industrial. vol.11, nº2, pp. 224-235. https://doi.org/10.1016/j.riai.2014.02.005

López, A. y otros, 2015a. Methodology and results of the sea trials for a second generation tidal converter. Proc. of 2nd Internationa Conference on Maritime Technology and Engineering (MARTECH'14), pp 1213-1221 Lisbon, Portugal.

López, A. y otros, 2015b. Dispositivo para el aprovechamiento de las corrientes marinas multi-rotor con estructura poligonal. Concesión ES2461440. PCT/ES2015/070071. Marzo 2015

Lynn, P.A., 2014. Electricity from Wave & Tide. Wiley.

Mathworks, 2016 web page: https://es.mathworks.com/products/matlab/

Möller, B. y otros, 2012. Evaluation of offshore wind resources by scale of development. Energy. vol 45, nº1, pp 314-322. https://doi.org/10.1016/j.energy.2012.01.029

Morales R. y otros, 2016. Online signal filtering based on the algebraic method and its experimental validation. Mechanical Systems and Signal Processing. pp 374-387. https://doi.org/10.1016/j.ymssp.2015.06.021

Myers, L.E. y otros, 2010. Equimar Deliverable D5.2: Device classification template. Equitable testing and evaluation of marine energy extraction devices in terms of performance, cost and environmental impact.

Núñez, L.R. y otros, 2011. The GESMEY Project. Design & Development of a Second Generation TEC. Proceedings 9th European Wave and Tidal Energy Conference (EWTEC'11), Southampton, United Kingdom.

Núñez, L.R. y otros, 2013. New steps in the development of the second generation TEC GESMEY. Proceedings 10th European Wave and Tidal Energy Conference. (EWTEC'13). Aalborg, Denmark.

Núñez, L.R. y otros, 2015. Comparative Analysis of Life Cycle Costs between the 2nd Generation TEC GESMEY and a 1st Generation TEC. Proceeding 11th European Wave and Tidal Energy Conference (EWTEC'15). Nantes, France.

Onstad, A.E. y otros, 2016. Site assessment of the floating wind turbine Hywind Demo. Energy Procedia. 94, pp 409-416. https://doi.org/10.1016/j.egypro.2016.09.205

Orcina, 2016 web page: https://www.orcina.com/SoftwareProducts/OrcaFlex/

Owen, A. y Trevor, M.L., 2008. Tidal current energy: origins and challenges. Future Energy, Oxford. Elsevier. pp111-128. https://doi.org/10.1016/B978-0-08-054808-1.00007-7

Rourke, F.O. y otros, 2010. Marine current energy devices: current status and possible future applications in Ireland. Renewable and Sustainable Energy Reviews. 14, pp 1026-1036. https://doi.org/10.1016/j.rser.2009.11.012

Saaty, T.L., 2008. Decision making with the analytic hierarchy process. Int. J. Services Sciences, vol. 1, nº1. pp 83-98. https://doi.org/10.1504/IJSSCI.2008.017590

Saravana, S. y Jawahar, N., 2013. Automated trajectory planner of industrial robot for pick-and-plane task. International Journal of Advanced Robotic Systems. 10, pp.100. https://doi.org/10.5772/53940

Sclavounos, P., 2008. Floating Offshore Wind Turbines. Marine Technology Society Journal. vol. 42, nº2, pp 39-43. https://doi.org/10.4031/002533208786829151

Somolinos, J.A., 2015. Control de operaciones de dispositivos marinos de aprovechamiento de la energía hidrocinética. Proyecto RETOS de la Sociedad DPI2014m bn-53499-R.

Somolinos, J. A y otros, 2017. Dynamic model and experimental validation for the control of emersion manoeuvers of devices for marine currents harnessing. Ren. Energy, vol 103, pp 333-345. https://doi.org/10.1016/j.renene.2016.10.076

Sun, X. y otros, 2012. The current state of offshore wind energy technology development. Energy. vol 41, nº 1, pp 298-312. https://doi.org/10.1016/j.energy.2012.02.054

Villate J.L. y Brito A., 2015 A. Annual Report Ocean Energy Systems 2015. www.iea-oceans.org.

White, Frank M., 2011. Fluid Mechanics. 7ª Edición. McGraw-Hill. New York, NY, USA.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem