- -

Sistema Automático Para la Detección de Distracción y Somnolencia en Conductores por Medio de Características Visuales Robustas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sistema Automático Para la Detección de Distracción y Somnolencia en Conductores por Medio de Características Visuales Robustas

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fernández Villán, Alberto es_ES
dc.contributor.author Usamentiaga Fernández, Rubén es_ES
dc.contributor.author Casado Tejedor, Rubén es_ES
dc.date.accessioned 2020-05-15T10:06:25Z
dc.date.available 2020-05-15T10:06:25Z
dc.date.issued 2017-07-09
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143377
dc.description.abstract [ES] De acuerdo con un reciente estudio publicado por la Organización Mundial de la Salud (OMS), se estima que 1.25 millones de personas mueren como resultado de accidentes de tráfico. De todos ellos, muchos son provocados por lo que se conoce como inatención, cuyos principales factores contribuyentes son tanto la distracción como la somnolencia. En líneas generales, se calcula que la inatención ocasiona entre el 25% y el 75% de los accidentes y casi-accidentes. A causa de estas cifras y sus consecuencias se ha convertido en un campo ampliamente estudiado por la comunidad investigadora, donde diferentes estudios y soluciones han sido propuestos, pudiendo destacar los métodos basados en visión por computador como uno de los más prometedores para la detección robusta de estos eventos de inatención. El objetivo del presente artículo es el de proponer, construir y validar una arquitectura especialmente diseñada para operar en entornos vehiculares basada en el análisis de características visuales mediante el empleo de técnicas de visión por computador y aprendizaje automático para la detección tanto de la distracción como de la somnolencia en los conductores. El sistema se ha validado, en primer lugar, con bases de datos de referencia testeando los diferentes módulos que la componen. En concreto, se detecta la presencia o ausencia del conductor con una precisión del 100%, 90.56%, 88.96% por medio de un marcador ubicado en el reposacabezas del conductor, por medio del operador LBP, o por medio del operador CS-LBP, respectivamente. En lo que respecta a la validación mediante la base de datos CEW para la detección del estado de los ojos, se obtiene una precisión de 93.39% y de 91.84% utilizando una nueva aproximación basada en LBP (LBP_RO) y otra basada en el operador CS-LBP (CS-LBP_RO). Tras la realización de varios experimentos para ubicar la cámara en el lugar más adecuado, se posicionó la misma en el salpicadero, pudiendo aumentar la precisión en la detección de la región facial de un 86.88% a un 96.46%. Las pruebas en entornos reales se realizaron durante varios días recogiendo condiciones lumínicas muy diferentes durante las horas diurnas involucrando a 16 conductores, los cuales realizaron diversas actividades para reproducir síntomas de distracción y somnolencia. Dependiendo del tipo de actividad y su duración, se obtuvieron diferentes resultados. De manera general y considerando de forma conjunta todas las actividades se obtiene una tasa media de detección del 93.11%. es_ES
dc.description.abstract [EN] According to the most recent studies published by the World Health Organization (WHO) in 2013, it is estimated that 1.25 million people die as a result of traffic crashes. Many of them are caused by what it is known as inattention, whose main contributing factors are both distraction and drowsiness. Overall, it is estimated that inattention causes between 25% and 75% of the crashes and near-crashes. That is why this is a thoroughly studied field by the research community, where solutions to combat distraction and drowsiness, in particular, and inattention, in general, can be classified into three main categories, and, where computer vision has clearly become a non-obtrusive effective tool for the detection of both distraction and drowsiness. The aim of this paper is to propose, build and validate an architecture based on the analysis of visual characteristics by using computer vision techniques and machine learning to detect both distraction and drowsiness in drivers. Firstly, the modules have been tested with all its components independently using several datasets. More specifically, the presence/absence of the driver is detected with an accuracy of 100%, 90.56%, 88.96% by using a marker positioned onto the headrest, the LBP operator and the CS-LBP operator, respectively. Regarding the eye closeness validation with CEW dataset, an accuracy of 93.39% and 91.84% is obtained using a new method using both LBP (LBP_RO) and CS-LBP (CS-LBP_RO). After performing several tests, the camera is positioned on the dashboard, increasing the accuracy of face detection from 86.88% to 96.46%. In connection with the tests performed in real-world settings, 16 drivers were involved performing several activities imitating different sings of sleepiness and distraction. Overall, an accuracy of 93.11%is obtained considering all activities and all drivers. es_ES
dc.description.sponsorship El origen de las actividades del presente trabajo ha sido realizado parcialmente gracias al apoyo tanto de la Fundación para el fomento en Asturias de la investigación científica aplicada y la tecnología (FICYT) y de la empresa SINERCO SL, por medio de la ejecución del proyecto "Creación de algoritmos de visión artificial ", con referencia IE09-511.El presente trabajo se engloba en la tesis doctoral de Alberto Fernández Villán. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Distraction and drowsiness detection es_ES
dc.subject Computer vision es_ES
dc.subject Perception and recognition es_ES
dc.subject Machine learning es_ES
dc.subject Monitoring and supervision es_ES
dc.subject Detección distracción y somnolencia es_ES
dc.subject Visión por computador es_ES
dc.subject Percepción y reconocimiento es_ES
dc.subject Aprendizaje automático es_ES
dc.subject Monitorización y supervisión es_ES
dc.title Sistema Automático Para la Detección de Distracción y Somnolencia en Conductores por Medio de Características Visuales Robustas es_ES
dc.title.alternative Automatic System to Detect Both Distraction and Drowsiness in Drivers Using Robust Visual Features es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2017.05.001
dc.relation.projectID info:eu-repo/grantAgreement/Gobierno del Principado de Asturias//IE09-511/ES/Creación de algoritmos de visión artificial/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Fernández Villán, A.; Usamentiaga Fernández, R.; Casado Tejedor, R. (2017). Sistema Automático Para la Detección de Distracción y Somnolencia en Conductores por Medio de Características Visuales Robustas. Revista Iberoamericana de Automática e Informática industrial. 14(3):307-328. https://doi.org/10.1016/j.riai.2017.05.001 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2017.05.001 es_ES
dc.description.upvformatpinicio 307 es_ES
dc.description.upvformatpfin 328 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9213 es_ES
dc.contributor.funder Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología es_ES
dc.contributor.funder Sinerco, S.L. es_ES
dc.description.references Abtahi, S., Omidyeganeh, M., Shirmohammadi, S., Hariri, B., 2014. Yawdd: a yawning detection dataset. In: Proceedings of the 5th ACM Multimedia Systems Conference. ACM, pp. 24-28. es_ES
dc.description.references Ahlstrom, C., Dukic, T., 2010. Comparison of eye tracking systems with one and three cameras. In: Proceedings of the 7th International Conference on Methods and Techniques in Behavioral Research. ACM, p. 3. es_ES
dc.description.references Ahonen, T., Hadid, A., Pietikainen, M., 2006. Face description with local binary patterns: Application to face recognition. IEEE transactions on pattern analysis and machine intelligence 28 (12), 2037-2041. es_ES
dc.description.references Asthana, A., Marks, T. K., Jones, M. J., Tieu, K. H., Rohith, M., 2011. Fully automatic pose-invariant face recognition via 3d pose normalization. In: 2011 International Conference on Computer Vision. IEEE, pp. 937-944. es_ES
dc.description.references Berri, R. A., Silva, A. G., Parpinelli, R. S., Girardi, E., Arthur, R., 2014. A pattern recognition system for detecting use of mobile phones while driving. In: Computer Vision Theory and Applications (VISAPP), 2014 International Conference on. Vol. 2. IEEE, pp. 411-418. es_ES
dc.description.references Bolme, D. S., Draper, B. A., Beveridge, J. R., 2009. Average of synthetic exact filters. In: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, pp. 2105-2112. es_ES
dc.description.references Boyraz, P., Yang, X., Hansen, J. H., 2012. Computer vision systems for contextaware active vehicle safety and driver assistance. In: Digital Signal Processing for In-Vehicle Systems and Safety. Springer, pp. 217-227. es_ES
dc.description.references Chang, C.-C., Lin, C.-J., 2011. Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2 (3), 27. es_ES
dc.description.references Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). Vol. 1. IEEE, pp. 886-893. es_ES
dc.description.references Daniluk, M., Rezaei, M., Nicolescu, R., Klette, R., 2014. Eye status based on eyelid detection: A driver assistance system. In: International Conference on Computer Vision and Graphics. Springer, pp. 171-178. es_ES
dc.description.references Dasgupta, A., George, A., Happy, S., Routray, A., Shanker, T., 2013. An onboard vision based system for drowsiness detection in automotive drivers. International Journal of Advances in Engineering Sciences and Applied Mathematics 5 (2-3), 94-103. es_ES
dc.description.references Devi, M. S., Bajaj, P. R., 2008. Driver fatigue detection based on eye tracking. In: 2008 First International Conference on Emerging Trends in Engineering and Technology. IEEE, pp. 649-652. es_ES
dc.description.references Dinges, D. F., Grace, R., 1998. Perclos: A valid psychophysiological measure of alertness as assessed by psychomotor vigilance. US Department of Transportation, Federal Highway Administration, Publication Number FHWAMCRT-98-006. es_ES
dc.description.references Dong, Y., Hu, Z., Uchimura, K., Murayama, N., 2011. Driver inattention monitoring system for intelligent vehicles: A review. IEEE transactions on intelligent transportation systems 12 (2), 596-614. es_ES
dc.description.references Fernandez, A., Carus, J., Usamentiaga, R., Alvarez, E., Casado, R., 2017. Wearable and ambient sensors to health monitoring using computer vision and signal processing techniques. Journal of Networks In press. es_ES
dc.description.references Fernandez, A., Carus, J. L., Usamentiaga, R., Alvarez, E., Casado, R., 2015a. Unobtrusive health monitoring system using video-based physiological information and activity measurements. In: Computer, Information and Telecommunication Systems (CITS), 2015 International Conference on. IEEE, pp. 1-5. es_ES
dc.description.references Fernandez, A., Casado, R., Usamentiaga, R., 2015b. A real-time big data architecture for glasses detection using computer vision techniques. In: Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on. IEEE, pp. 591-596. es_ES
dc.description.references Fernandez, A., García, R., Usamentiaga, R., Casado, R., 2015c. Glasses detection on real images based on robust alignment. Machine Vision and Applications 26 (4), 519-531. es_ES
dc.description.references Fernandez, A., Usamentiaga, R., Carus, ' J. L., Casado, R., 2016. Driver distraction using visual-based sensors and algorithms. Sensors 16 (11), 1805. es_ES
dc.description.references Flores, M. J., Armingol, J. M., de la Escalera, A., 2010. Real-time warning system for driver drowsiness detection using visual information. Journal of Intelligent & Robotic Systems 59 (2), 103-125. es_ES
dc.description.references Flores, M. J., de la Escalera, A., et al., 2011. Sistema avanzado de asistencia a la conduccion para la detecci ' on de la somnolencia. Revista Iberoamericana ' de Automatica ' e Informatica Industrial RIAI ' 8 (3), 216-228. es_ES
dc.description.references Forsman, P. M., Vila, B. J., Short, R. A., Mott, C. G., Van Dongen, H. P., 2013. Efficient driver drowsiness detection at moderate levels of drowsiness. Accident Analysis & Prevention 50, 341-350. es_ES
dc.description.references Hadid, A., Pietikainen, M., 2013. Demographic classification from ¨ face videos using manifold learning. Neurocomputing 100, 197-205. es_ES
dc.description.references Hammoud, R. I., Wilhelm, A., Malawey, P., Witt, G. J., 2005. Efficient real-time algorithms for eye state and head pose tracking in advanced driver support systems. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. Vol. 2. IEEE, pp. 1181-vol. es_ES
dc.description.references Hansen, D. W., Ji, Q., 2010. In the eye of the beholder: A survey of models for eyes and gaze. IEEE Transactions on pattern analysis and machine intelligence 32 (3), 478-500. es_ES
dc.description.references Hattori, A., Tokoro, S., Miyashita, M., Tanaka, I., Ohue, K., Uozumi, S., 2006. Development of forward collision warning system using the driver behavioral information. Tech. rep., SAE Technical Paper. es_ES
dc.description.references Heikkila, M., Pietik ¨ ainen, M., Schmid, C., 2009. Description ¨ of interest regions with local binary patterns. Pattern recognition 42 (3), 425-436. es_ES
dc.description.references Hong, T., Qin, H., 2007. Drivers drowsiness detection in embedded system. In: Vehicular Electronics and Safety, 2007. ICVES. IEEE International Conference on. IEEE, pp. 1-5. es_ES
dc.description.references Hsu, C.-W., Chang, C.-C., Lin, C.-J., et al., 2003. A practical guide to support vector classification. es_ES
dc.description.references Jain, V., Learned-Miller, E. G., 2010. Fddb: A benchmark for face detection in unconstrained settings. UMass Amherst Technical Report. es_ES
dc.description.references Jo, J., Lee, S. J., Park, K. R., Kim, I.-J., Kim, J., 2014. Detecting driver drowsiness using feature-level fusion and user-specific classification. Expert Systems with Applications 41 (4), 1139-1152. es_ES
dc.description.references Jung, J.-Y., Kim, S.-W., Yoo, C.-H., Park, W.-J., Ko, S.-J., 2016. Lbp-fernsbased feature extraction for robust facial recognition. IEEE Transactions on Consumer Electronics 62 (4), 446-453. es_ES
dc.description.references Lee, S. J., Jo, J., Jung, H. G., Park, K. R., Kim, J., 2011. Real-time gaze estimator based on driver's head orientation for forward collision warning system. IEEE Transactions on Intelligent Transportation Systems 12 (1), 254-267. es_ES
dc.description.references Li, H., Lin, Z., Shen, X., Brandt, J., Hua, G., 2015. A convolutional neural network cascade for face detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5325-5334. es_ES
dc.description.references Liu, C. C., Hosking, S. G., Lenne, M. G., 2009. Predicting driver drowsiness ' using vehicle measures: Recent insights and future challenges. Journal of safety research 40 (4), 239-245. es_ES
dc.description.references Lopez Romero, ' W. L., 2016. Sistema de control del estado de somnolencia en conductores de vehículos. es_ES
dc.description.references Losada, D. G., Lopez, ' G. A. R., Acevedo, R. G., Villan, ' A. F., 2013. Aviueartificial vision to improve the user experience. In: New Concepts in Smart Cities: Fostering Public and Private Alliances (SmartMILE), 2013 International Conference on. IEEE, pp. 1-6. es_ES
dc.description.references Lu, L., Ning, X., Qian, M., Zhao, Y., 2011. Close eye detected based on synthesized gray projection. In: Advances in Multimedia, Software Engineering and Computing Vol. 2. Springer, pp. 345-351. es_ES
dc.description.references Markus, N., Frljak, M., Pand ˇ ziˇ c, I. S., Ahlberg, J., Forchheimer, R., 2014. Object detection with pixel intensity comparisons organized in decision trees. arXiv preprint arXiv:1305.4537. es_ES
dc.description.references Martin, E., 2006. Breakthrough research on real-world driver behavior released. National Highway Traffic Safety Administration. es_ES
dc.description.references Mbouna, R. O., Kong, S. G., Chun, M.-G., 2013. Visual analysis of eye state and head pose for driver alertness monitoring. IEEE transactions on intelligent transportation systems 14 (3), 1462-1469. es_ES
dc.description.references Murphy-Chutorian, E., Trivedi, M. M., 2010. Head pose estimation and augmented reality tracking: An integrated system and evaluation for monitoring driver awareness. IEEE Transactions on intelligent transportation systems 11 (2), 300-311. es_ES
dc.description.references Noori, S. M. R., Mikaeili, M., 2016. Driving drowsiness detection using fusion of electroencephalography, electrooculography, and driving quality signals. Journal of medical signals and sensors 6 (1), 39. es_ES
dc.description.references Nuevo, J., Bergasa, L. M., Jimenez, ' P., 2010. Rsmat: Robust simultaneous modeling and tracking. Pattern Recognition Letters 31 (16), 2455-2463. es_ES
dc.description.references of Transportation, D., 2016. Pennsylvania driver's manual. https://goo.gl/ XCER8C, accessed: 2016-09-018. es_ES
dc.description.references Ojala, T., Pietikainen, M., Harwood, D., 1996. ¨ A comparative study of texture measures with classification based on featured distributions. Pattern recognition 29 (1), 51-59. es_ES
dc.description.references Ojala, T., Pietikainen, M., Maenpaa, T., 2002. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on pattern analysis and machine intelligence 24 (7), 971-987. es_ES
dc.description.references Organization, W. H., 2016. Global status report on road safety 2015. http: //goo.gl/jMoJ4l, accessed: 2016-07-01. es_ES
dc.description.references Pan, G., Sun, L., Wu, Z., Lao, S., 2007. Eyeblink-based anti-spoofing in face recognition from a generic webcamera. In: Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on. IEEE, pp. 1-8. es_ES
dc.description.references Peden, M., Toroyan, T., Krug, E., Iaych, K., et al., 2016. The status of global road safety: The agenda for sustainable development encourages urgent action. Journal of the Australasian College of Road Safety 27 (2), 37. es_ES
dc.description.references Phillips, P. J., Moon, H., Rizvi, S. A., Rauss, P. J., 2000. The feret evaluation methodology for face-recognition algorithms. IEEE Transactions on pattern analysis and machine intelligence 22 (10), 1090-1104. es_ES
dc.description.references RACE, A. y. l. D., 2016. Los conductores espanoles reconocen sufrir m ˜ as som- ' nolencia al volante que los usuarios europeos. http://goo.gl/mui9S3, accessed: 2016-07-01. es_ES
dc.description.references Regan, M. A., Hallett, C., Gordon, C. P., 2011. Driver distraction and driver inattention: Definition, relationship and taxonomy. Accident Analysis & Prevention 43 (5), 1771-1781. es_ES
dc.description.references Sahayadhas, A., Sundaraj, K., Murugappan, M., 2012. Detecting driver drowsiness based on sensors: a review. Sensors 12 (12), 16937-16953. es_ES
dc.description.references Selvakumar, K., Jerome, J., Rajamani, K., Shankar, N., 2015. Real-time vision based driver drowsiness detection using partial least squares analysis. Journal of Signal Processing Systems, 1-12. es_ES
dc.description.references Shan, C., 2012. Learning local binary patterns for gender classification on realworld face images. Pattern Recognition Letters 33 (4), 431-437. es_ES
dc.description.references Shan, C., Gong, S., McOwan, P. W., 2009. Facial expression recognition based on local binary patterns: A comprehensive study. Image and Vision Computing 27 (6), 803-816. es_ES
dc.description.references Sigari, M. H., 2009. Driver hypo-vigilance detection based on eyelid behavior. In: Advances in Pattern Recognition, 2009. ICAPR'09. Seventh International Conference on. IEEE, pp. 426-429. es_ES
dc.description.references Slawinski, E., Mut, ˜ V., Penizzotto, F., 2015. Sistema de alerta al conductor basado en realimentacion vibro-t ' actil. ' Revista Iberoamericana de Automatica ' e Informatica Industrial RIAI ' 12 (1), 36-48. es_ES
dc.description.references Song, F., Tan, X., Chen, S., Zhou, Z.-H., 2013. A literature survey on robust and efficient eye localization in real-life scenarios. Pattern Recognition 46 (12), 3157-3173. es_ES
dc.description.references Song, F., Tan, X., Liu, X., Chen, S., 2014. Eyes closeness detection from still images with multi-scale histograms of principal oriented gradients. Pattern Recognition 47 (9), 2825-2838. es_ES
dc.description.references StopChatear, 2016. Uso de los smartphones en la conduccion. ' http://goo. gl/67dvtn, accessed: 2016-07-01. es_ES
dc.description.references Talbot, R., Fagerlind, H., Morris, A., 2013. Exploring inattention and distraction in the safetynet accident causation database. Accident Analysis & Prevention 60, 445-455. es_ES
dc.description.references Tan, X., Triggs, B., 2010. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE transactions on image processing 19 (6), 1635-1650. es_ES
dc.description.references Timm, F., Barth, E., 2011. Accurate eye centre localisation by means of gradients. VISAPP 11, 125-130. es_ES
dc.description.references Uˇricˇa'ˇr, M., Franc, V., Hlava'c, V., 2012. Detector of facial landmarks learned by ˇ the structured output svm. VIsAPP 12, 547-556. es_ES
dc.description.references Vapnik, V., 1998. Statistical learning theory wiley new york google scholar. es_ES
dc.description.references Vicente, F., Huang, Z., Xiong, X., De la Torre, F., Zhang, W., Levi, D., 2015. Driver gaze tracking and eyes off the road detection system. IEEE Transactions on Intelligent Transportation Systems 16 (4), 2014-2027. es_ES
dc.description.references Villan, A. F., Candas, J. L. C., Fernandez, R. U., Tejedor, R. C., 2016. Face recognition and spoofing detection system adapted to visually-impaired people. IEEE Latin America Transactions 14 (2), 913-921. es_ES
dc.description.references Viola, P., Jones, M. J., 2004. Robust real-time face detection. International journal of computer vision 57 (2), 137-154. es_ES
dc.description.references Vural, E., Cetin, M., Ercil, A., Littlewort, G., Bartlett, M., Movellan, J., 2007. Drowsy driver detection through facial movement analysis. In: International Workshop on Human-Computer Interaction. Springer, pp. 6-18. es_ES
dc.description.references You, C.-W., Lane, N. D., Chen, F., Wang, R., Chen, Z., Bao, T. J., Montes-de Oca, M., Cheng, Y., Lin, M., Torresani, L., et al., 2013. Carsafe app: alerting drowsy and distracted drivers using dual cameras on smartphones. In: Proceeding of the 11th annual international conference on Mobile systems, applications, and services. ACM, pp. 13-26. es_ES
dc.description.references Zhang, Z., Zhang, J.-s., 2006. Driver fatigue detection based intelligent vehicle control. In: 18th International Conference on Pattern Recognition (ICPR'06). Vol. 2. IEEE, pp. 1262-1265. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem