- -

Control y Operación de Estaciones Depuradoras de Aguas Residuales: Modelado y Simulación

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Control y Operación de Estaciones Depuradoras de Aguas Residuales: Modelado y Simulación

Show simple item record

Files in this item

dc.contributor.author Vilanova, Ramón es_ES
dc.contributor.author Santín, Ignacio es_ES
dc.contributor.author Pedret, Carles es_ES
dc.date.accessioned 2020-05-15T11:05:06Z
dc.date.available 2020-05-15T11:05:06Z
dc.date.issued 2017-07-09
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143386
dc.description.abstract [ES] Este trabajo constituye la primera parte de una revisión de la problemática del control y operación de estaciones depuradoras de aguas residuales (EDAR) para el tratamiento de agua residual urbana. En esta primera parte nos centramos en el modelado y simulación mientras que la segunda parte se dedica en exclusiva al control y operación. Esta depuración se realiza, mayoritariamente, mediante procesos biológicos, concretamente, mediante el denominado proceso de fangos activados. El hecho de tratar con un proceso biológico conlleva una elevada complejidad tanto desde el punto de vista de modelado como, por supuesto, de control y operación. Para poder ubicar convenientemente el problema, se presenta una caracterización de las aguas residuales urbanas y las necesidades de depuración asociadas. El control y operación descansan en gran medida en la disponibilidad de modelos apropiados y, ya hoy en día, de una elevada fiabilidad. Se presentan los modelos de la familia ASM; poniendo especial énfasis en el ASM1 que se describe en más detalle; así como las características de otras unidades de proceso como el decantador y su interconexión. En estos modelos destacan los entornos BSM de benchmarking, que han sido esenciales para todo el posterior desarrollo en la actividad de control y operación. es_ES
dc.description.abstract [EN] This tutorial is the first part of a review of the problems arising with the control and operation of wastewater treatment plants (WWTP) for urban wastewater. This first part will concentrate in the modelling and simulation steps whereas the second part will cover the control and operation issues. This treatment is carried out, mainly, by biological processes. Specifically, by the so-called activated sludge process. Dealing with a biological process entails a high complexity both from the viewpoint of modelling and, of course, from what matters to control and operation. In order to properly locate the problem, a characterisation of the urban wastewater and the associated treatment needs are presented. Control and operation rely heavily on the availability of appropriate models and, today, of proved reliability. The models of the ASM family are presented; placing special emphasis on the ASM1 that is described in more detail; as well as the characteristics of other process units like the settler and its interconnection. These models highlight the BSM benchmarking environments, which have been essential for all subsequent development in the control and operation activity. es_ES
dc.description.sponsorship Este trabajo es fruto de la investigacion de los autores en ´ diversos proyectos financiados por el Ministerio de Econom´ıa y Competitividad que han desembocado en el proyecto que se esta llevando a cabo actualmente, DPI2016-77271-R es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Wastewater treatment plants es_ES
dc.subject Activated sludge process es_ES
dc.subject Benchmarking es_ES
dc.subject Estaciones depuradoras de aguas residuales es_ES
dc.subject Proceso de fangos activados es_ES
dc.title Control y Operación de Estaciones Depuradoras de Aguas Residuales: Modelado y Simulación es_ES
dc.title.alternative Control and operation of wastewater treatment plants es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2017.05.004
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-77271-R/ES/CONTROL Y ESTRATEGIAS DE OPERACION PARA MITIGACION DE EMISION DE GASES DE EFECTO INVERNADERO: APLICACION A PLANTAS DE TRATAMIENTO DE AGUAS RESIDUALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Vilanova, R.; Santín, I.; Pedret, C. (2017). Control y Operación de Estaciones Depuradoras de Aguas Residuales: Modelado y Simulación. Revista Iberoamericana de Automática e Informática industrial. 14(3):217-233. https://doi.org/10.1016/j.riai.2017.05.004 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2017.05.004 es_ES
dc.description.upvformatpinicio 217 es_ES
dc.description.upvformatpfin 233 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9203 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Alex, J., Benedetti, L., Copp, J., Gernaey, K., Jeppsson, U., Nopens, I., Pons, M.-N., Steyer, J.-P., Vanrolleghem, P., 2008. Benchmark simulation model no. 1 (bsm1). Tech. rep., Lund University. es_ES
dc.description.references Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S., Pavlostathis, S., Rozzi, A., Sanders, W., Siegrist, H., Vavilin, V., 2002. The iwa anaerobic digestion model no 1 (adm1). Water Science and Technology 45 (10), 65-73. es_ES
dc.description.references Cadet, C., Martins, V. D. S., Dochain, D., oct 2015. Dynamic modeling of clarifier-thickeners for the control of wastewater treatment plants: a critical analysis. En: 2015 19th International Conference on System Theory, Control and Computing (ICSTCC). IEEE. DOI: 10.1109/icstcc.2015.7321354 es_ES
dc.description.references Carstensen, J., Haffemoes, ¨ P., Madsen, H., 1995. Statistical identification of monod-kinetic parameters from on-line measurements. Water Science and Technology 31 (2), 125-133. es_ES
dc.description.references Copp, J. B., 2002. The Cost Simulation benchmark: Description and simulator manual (COST Action 624 and Action 682). Luxembourg: Office for Official Publications od the European Union. es_ES
dc.description.references Diehl, S., sep 2007. Estimation of the batch-settling flux function for an ideal suspension from only two experiments. Chemical Engineering Science 62 (17), 4589-4601. DOI: 10.1016/j.ces.2007.05.025 es_ES
dc.description.references Ekama, G. A., Barnard, J. L., GA˜ 1 4 nthert, F. W., Krebs, P., McCorquodale, J. A., Parker, D. S., Wahlberg, E. J., 1997. Secondary settling tanks: Theory, modelling, design and operation. iawq scientific and technical report no. 6. Tech. rep., International Association on Water Quality, England. es_ES
dc.description.references Gernaey, K. V., Rosen, C., Jeppsson, U., 2006. Wwtp dynamic disturbance modelling - an essential module for long-term benchmarking development. Water science and technology 53, 225-234. es_ES
dc.description.references Gomez-Quintero, C., Queinnec, I., Babary, J., June 14-16 2000. A reduced nonlinear model of an activated sludge process. En: In Proc. of the International Symposium on Advanced Control on Chemical Processes (ADCHEM). Pisa, Italy. es_ES
dc.description.references Henze, M., Grady, C., Gujer, W., Marais, G., Matsuo, T., 1987. Activated sludge model 1. Scientific and Technical Report No.1. IAWQ, London, UK. es_ES
dc.description.references Henze, M., Gujer, W., Mino, T., van Loosedrecht, M., 2002. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. Scientific and Technical Reports, No. 9. IWA Publishing. es_ES
dc.description.references Henze, M., van Loosdrecht, M., Brdjanovic, D., Ekama, G., 2008. Biological Wastewater Treatment: Principles, Modelling and Design. IWA Publishing. es_ES
dc.description.references Ingildsen, P., 2002. Realising full-scale control in wastewater treatment systems using in situ nutrient sensors. Ph.D. thesis, Department of Industrial Electrical Engineering and Automation. es_ES
dc.description.references Jeppsson, U., 1993. On the verifiability of the activated sludge dynamics. Master's thesis, IEA, Lund Institute of Technology. es_ES
dc.description.references Jeppsson, U., 1996. Modelling aspects of wastewater treatment processes. Ph.D. thesis, Department of Industrial Electrical Engineering and Automation, Lund Institute of Technology, Lund, Sweden. es_ES
dc.description.references Jeppsson, U., Olsson, G., 1993. Reduced order models for on-line parameter identification of the activated sludge process. Water Science and Technology 28 (11-12), 173-183. es_ES
dc.description.references Jeppsson, U., Pons, M.-N., mar 2004. The COST benchmark simulation model - current state and future perspective. Control Engineering Practice 12 (3), 299-304. DOI: 10.1016/j.conengprac.2003.07.001 es_ES
dc.description.references Jeppsson, U., Pons, M.-N., Nopens, I., Alex, J., Copp, J., Gernaey, K., Rosen, C., Steyer, J.-P., Vanrolleghem, P., 2007. Benchmark Simulation Model No 2: general protocol and exploratory case studies. Water Science and Technology 56 (8), 67-78. es_ES
dc.description.references Jeppsson, U., Rosen, C., Alex, J., Copp, J., Gernaey, K., Pons, M.-N., Vanrolleghem, P., 2006. Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs. Water Science and Technology 53 (1), 287-295. es_ES
dc.description.references Julien, S., Babary, J., Lessard, P., 1998. Theoretical and practical identifiability of a reduced order model in an activated sludge process doing nitrification and denitrification. Water science and technology 37 (12), 309-316. es_ES
dc.description.references Julien, S., Lessard, P., Barbary, J., 1999. A reduced order model for control of a single reactor activated sludge process. Mathematical and Computer Modelling of Dynamical Systems 5 (4), 337-350. es_ES
dc.description.references Kabouris, J., Georgakakos, A., 1992. Accounting for different time scales in activated sludge process control. Water Science and Technology 26 (5-6), 1381-1390. es_ES
dc.description.references Kokotovic, P. V., O'malley, R., Sannuti, P., 1976. Singular perturbations and order reduction in control theory: an overview. Automatica 12 (2), 123- 132. es_ES
dc.description.references Kynch, G. J., 1952. A theory of sedimentation. Transactions of the Faraday Society 48, 166. DOI: 10.1039/tf9524800166 es_ES
dc.description.references Lee, T., Wang, F., Newell, R., oct 2002. Robust model-order reduction of complex biological processes. Journal of Process Control 12 (7), 807-821. DOI: 10.1016/s0959-1524(02)00006-9 es_ES
dc.description.references Marsili-Libelli, S., 1989. Modelling, identification and control of the activated sludge process. Lignocellulosic Materials, 89-148. es_ES
dc.description.references Nopens, I., Batstone, D. J., Copp, J. B., Jeppsson, U., Volcke, E., Alex, J., Vanrolleghem, P. A., apr 2009. An ASM/ADM model interface for dynamic plant-wide simulation. Water Research 43 (7), 1913-1923. DOI: 10.1016/j.watres.2009.01.012 es_ES
dc.description.references Nopens, I., Benedetti, L., Jeppsson, U., Pons, M.-N., Alex, J., Copp, J. B., Gernaey, K. V., Rosen, C., Steyer, J.-P., Vanrolleghem, P. A., 2010. Benchmark Simulation Model No 2: finalisation of plant layout and default control strategy. Water Science and Technology 62 (9), 1967-1974. es_ES
dc.description.references Olsson, G., Jeppsson, U., 2006. Plant-wide control: dream, necessity or reality? Water science and technology 53 (3), 121-129. es_ES
dc.description.references Olsson, G., Newell, B., 1999. Wastewater treatment systems: modelling, diagnosis and control. IWA publishing. es_ES
dc.description.references Petty, C., 1975. Continuous sedimentation of a suspension with a nonconvex flux law. Chemical Engineering Science 30 (12), 1451-1458. DOI: 10.1016/0009-2509(75)85022-6 es_ES
dc.description.references Robuste, J., 1990. Modelitzacio i identificació del proces de fangs activats. ' Ph.D. thesis, Universidad Autonóma Barcelona. es_ES
dc.description.references Rosen, C., Vrecko, D., Gernaey, K., Pons, M., Jeppsson, U., aug 2006. Implementing ADM1 for plant-wide benchmark simulations in matlab/simulink. Water Science & Technology 54 (4), 11. DOI: 10.2166/wst.2006.521 es_ES
dc.description.references Smets, I. Y., Haegebaert, J. V., Carrette, R., Van Impe, J. F., 2003. Linearization of the activated sludge model asm1 for fast and reliable predictions. Water research 37 (8), 1831-1851. es_ES
dc.description.references Steffens, M., Lant, P., Newell, R., mar 1997. A systematic approach for reducing complex biological wastewater treatment models. Water Research 31 (3), 590-606. DOI: 10.1016/s0043-1354(96)00273-4 es_ES
dc.description.references Takacs, I., Patry, G. G., Nolasco, D., oct 1991. A dynamic model of the clarification-thickening process. Water Research 25 (10), 1263-1271. DOI: 10.1016/0043-1354(91)90066-y es_ES
dc.description.references Vitasovic, Z., 1989. Continuous settler operation: a dynamic model. Ch. Dynamic Modelling and Expert Systems in Wastewater Engineering, pp. 59-81. es_ES
dc.description.references Zhao, H., Isaacs, S., Søeberg, H., Kummel, M., 1995. ¨ An analysis of nitrogen removal and control strategies in an alternating activated sludge process. Water research 29 (2), 535-544. es_ES


This item appears in the following Collection(s)

Show simple item record