Mostrar el registro sencillo del ítem
dc.contributor.author | Yañez Badillo, Hugo | es_ES |
dc.contributor.author | Tapia Olvera, Rubén | es_ES |
dc.contributor.author | Aguilar Mejía, Omar | es_ES |
dc.contributor.author | Beltrán Carbajal, Francisco | es_ES |
dc.date.accessioned | 2020-05-18T05:51:08Z | |
dc.date.available | 2020-05-18T05:51:08Z | |
dc.date.issued | 2017-04-03 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/143474 | |
dc.description.abstract | [ES] Los sistemas de control automático día a día se han convertido en elementos importantes en la vida cotidiana, en tal sentido, se deben proponer nuevas y mejores formas de incorporar modelos matemáticos y algoritmos de control adaptativos para superar la gran cantidad de cambios técnicos y físicos a los que se enfrentan para su utilización. En este artículo se realiza el control de posición y seguimiento de trayectorias para un Quadrotor. Debido a la naturaleza no lineal de este sistema subactuado, se propone el empleo de un controlador adaptativo basado en redes neuronales B-spline que permita determinar las señales de control mediante un entrenamiento dividido en dos etapas: a) uno inicial fuera de línea y; b) uno continuo en línea. Esta forma de aprendizaje permite al Quadrotor extender un desempeño satisfactorio ante diferentes condiciones operativas y seguimiento de los valores de referencia. Los resultados de simulación verifican la aplicabilidad del controlador propuesto y el impacto que se tiene en el desempeño del sistema minimizando la necesidad de contar con un modelo matemático no lineal detallado, así como el conocimiento exacto de los valores de los parámetros del Quadrotor. | es_ES |
dc.description.abstract | [EN] Automatic control systems every day become more important in everyday life; therefore, it must find new and better ways to incorporate mathematical models and adaptive control algorithms to cope with a number of technical and physical challenges for exploitation. In this paper, the algorithm of the dynamic model of a Quadrotor applied to an angular position and trajectory control as a study case is detailed. Due to nonlinear nature of this type of systems, an adaptive on line neurocontroller algorithm based on B-spline neural networks is proposed, the learning procedure is divided in two stages: a) an initial off line training and; b) an on line continuous learning. This form of learning allows the Quadrotor extend its satisfactory performance at different operating conditions and trajectory tracking. The simulation results demonstrate the applicability of the developed model and the impact of dynamic control on the system performance, diminishing the exact model requirement and the possibility to incorporate the system non linearities. | es_ES |
dc.description.sponsorship | Este trabajo ha sido apoyado por CONACYT bajo el proyecto 266333. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Neural Network Control | es_ES |
dc.subject | Model-Free Control | es_ES |
dc.subject | Automatic Learning | es_ES |
dc.subject | Underactuated Systems | es_ES |
dc.subject | Control Neuronal | es_ES |
dc.subject | Control Libre de Modelo | es_ES |
dc.subject | Aprendizaje Automático | es_ES |
dc.subject | Sistemas Subactuados | es_ES |
dc.title | Control Neuronal en Línea para Regulación y Seguimiento de Trayectorias de Posición para un Quadrotor | es_ES |
dc.title.alternative | On Line Adaptive Neurocontroller for Regulating Angular Position and Trajectory of Quadrotor System | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.riai.2017.01.001 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//266333/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Yañez Badillo, H.; Tapia Olvera, R.; Aguilar Mejía, O.; Beltrán Carbajal, F. (2017). Control Neuronal en Línea para Regulación y Seguimiento de Trayectorias de Posición para un Quadrotor. Revista Iberoamericana de Automática e Informática industrial. 14(2):141-151. https://doi.org/10.1016/j.riai.2017.01.001 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.riai.2017.01.001 | es_ES |
dc.description.upvformatpinicio | 141 | es_ES |
dc.description.upvformatpfin | 151 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\9216 | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.description.references | Argentim L. M., Rezende W. C., Santos P. E., Aguiar R. A., 2013. PID, LQR and LQR-PID on a Quadcopter Platform. Proc. of the IEEE International Conference on Informatics, Electronics & Vision (ICIEV), 1-6. DOI: 10.1109/ICIEV.2013.6572698 | es_ES |
dc.description.references | Bauer P., Ritzinger G., Soumelidis A., Bokor J., 2008. LQ Servo control design with Kalman filter for a quadrotor UAV. Periodica Polytechnic Transportation Engineering 36(1-2), 9-14. DOI: 10.3311/pp.tr.2008-1-2.02 | es_ES |
dc.description.references | Benallegue A., Mokhtari A., Fridman L., 2008. High-order sliding-mode observer for a quadrotor UAV. International Journal of Robust and Nonlinear Control 18(4-5), 427-440. DOI: 10.1002/rnc.1225 | es_ES |
dc.description.references | Bouabdallah S., Noth A., Siegwart R., 2004. PID vs LQ Control Techniques Applies to an Indoor micro quadrotor. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems 3, 2451-2456. DOI: 10.1109/IROS.2004.1389776 | es_ES |
dc.description.references | Bouabdallah S., Siegwart R., 2005. Backstepping and Sliding-mode Techniques. Applied to an Indoor Micro Quadrotor. Proc. of the IEEE International Conference on Robotics and Automation, 2247-2252. DOI: 10.1109/ROBOT.2005.1570447 | es_ES |
dc.description.references | Bouabdallah S., Siegwart R., 2007. Full Control of a Quadrotor. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 153- 158. DOI: 10.1109/IROS.2007.4399042 | es_ES |
dc.description.references | Boudjedir H., Bouhali O., Rizoug N., 2014. Adaptive neural network control based on neural observer for a quadrotor unmanned aerial vehicle. Advanced Robotics 28(17), 1151-1164. DOI: 10.1080/01691864.2014.913498 | es_ES |
dc.description.references | Bresciani T., 2008. Modeling, Identification and Control of a Quadrotor Helicopter. Master Thesis. Department of Automatic Control, Lund University, Suecia. | es_ES |
dc.description.references | Brown M., Harris C., 1994. Neurofuzzy Adaptive Modelling and Control. Prentice Hall International, New York. | es_ES |
dc.description.references | Castillo P., García P., Lozano R., Albertos P., 2007. Modelado y estabilización de un Helicóptero con cuatro rotores. Revista Iberoamericana de Automática e Informática Industrial 4(1), 41-57. DOI: 10.1016/S1697- 7912(07)70191-7 | es_ES |
dc.description.references | Chee K.Y., Zhong Z.W., 2013. Control, navigation and collision avoidance for an unmanned aerial vehicle. Sensors and Actuators A: Physical 190, 66-76. DOI: 10.1016/j.sna.2012.11.017 | es_ES |
dc.description.references | Dierks T., Jagannathan S., 2010. Output Feedback Control of a Quadrotor UAV Using Neural Networks. IEEE Transactions on Neural Networks 21(1), 50- 66. DOI: 10.1109/TNN.2009.2034145 | es_ES |
dc.description.references | Dikmen I. C., Arisoy A., Temeltas H., 2009. Attitude Control of a Quadrotor. Proc. of the 14th IEEE International Conference on Recent Advances in Space Technologies, 722-727. DOI: 10.1109/RAST.2009.5158286 | es_ES |
dc.description.references | Dydek Z.T., Annaswamy A.M., Lavretsky E., 2013. Adaptive configuration control of multiple UAVs. Control Engineering Practice 21(8), 1043-1052. DOI:10.1016/j.conengprac.2013.03.010 | es_ES |
dc.description.references | Emran B., Yesildirek A., 2014. Robust Nonlinear Composite Adaptative Control of Quadrotor. International Journal of Digital Information and Wireless Communications 4(2), 213-225. DOI: 10.17781/P001100 | es_ES |
dc.description.references | En-Hui Z., Jing-Jing X., Ji-Liang L., 2014. Second order sliding mode control for a quadrotor UAV. ISA Transactions 53(4), 1350-1356. DOI: 10.1016/j.isatra.2014.03.010 | es_ES |
dc.description.references | Erginer B., Altug E., 2007. Modeling and PD Control of a Quadrotor VTOL Vehicle. Proc. of the IEEE Intelligent Vehicles Symposium, 894-899. DOI: 10.1109/IVS.2007.4290230 | es_ES |
dc.description.references | Estelles S., Tomas-Rodriguez M., 2015. Quadrotor multibody modelling by vehiclesim: adaptive technique for oscillations in a PVA control system. Journal of Vibration and Control. DOI: 10.1177/1077546315619776. | es_ES |
dc.description.references | Fatan M., Sefidgari B. L., Barenji A. V., 2013. An Adaptive Neuro PID for Controlling the Altitude of Quadcopter Robot. Proc. of the IEEE 18th International Conference on Methods and Models in Automation and Robotics (MMAR), 662-665. DOI: 10.1109/MMAR.2013.6669989 | es_ES |
dc.description.references | Hoffmann G. M., Waslander S. L., Tomlin C. J., 2008. Quadrotor Helicopter trajectory tracking control. In AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, USA. | es_ES |
dc.description.references | Jing-Jing X., En-Hui Z., 2014. Position and attitude tracking control for a quadrotor UAV. ISA Transactions 53(3), 725-731. DOI: 10.1016/j.isatra.2014.01.004 | es_ES |
dc.description.references | Johnson N. L., Leang K. K., 2013. Enhanced proportional-derivative control of a micro Quadcopter. Proc. of the ASME Dynamics Systems and Control Conference, 1-5. DOI:10.1115/DSCC2013-3990 | es_ES |
dc.description.references | Luque-Vega L., Castillo-Toledo B., Loukianov A. G., 2012. Robust block second order sliding mode control for a quadrotor. Journal of the Franklin Institute 349(2), 719-739. DOI: 10.1016/j.jfranklin.2011.10.017 | es_ES |
dc.description.references | Meng Leong B. T., Ming Low S., Po-Leen Ooi M., 2012. Low-Cost Microcontroller-based Hover Control Design of a Quadcopter. Proc. of the International Symposium on Robotics and Intelligent Sensors (IRIS) 41. 458-464. DOI: 10.1016/j.proeng.2012.07.198 | es_ES |
dc.description.references | Mian A. A., Daobo W., 2008. Modeling and Backstepping-based Nonlinear Control Strategy for a 6 DOF Quadrotor Helicopter. Chinese Journal of Aeronautics 21(3), 261-268. DOI: 10.1016/S1000-9361(08)60034-5 | es_ES |
dc.description.references | Mian A. A., Mian I. A., Daobo W., 2008. Backstepping based PID Control Strategy for an Underactuated Aerial Robot. Proc. of the 17th IFAC World Congress 17, 15636-15641. DOI: 10.3182/20080706-5-KR-1001.02644 | es_ES |
dc.description.references | Mohamed Raju H., 2010. Dynamics Modeling and Control of a Quad-Rotor Helicopter. Master Thesis. Memorial University of Newfoundland, Faculty of Engineering & Applied Science, Canada. | es_ES |
dc.description.references | Nicol C., Macnab C. J. B., Ramirez-Serrano A., 2008. Robust Neural Network Control of a Quadrotor helicopter. Proc. of the IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 1233-1238. DOI: 10.1109/CCECE.2008.4564736 | es_ES |
dc.description.references | Osman A. H., Abdelazim T., Malik O. P., 2005. Transmission Line Distance Relaying Using on-line Trained Neural Network. IEEE Transactions on Power Delivery 20(2), 1257-1264. DOI: 10.1109/TPWRD.2004.833897 | es_ES |
dc.description.references | Pipatpaibul P. -i., Ouyang P. R., 2013. Application of Online Iterative Learning Tracking Control for Quadrotor UAVs. ISRN Robotics Volume 2013. ID 476153. | es_ES |
dc.description.references | Saad D., 1998. On-line learning in neural networks. Cambridge University Press, UK. | es_ES |
dc.description.references | Salih A. L., Moghavvemi M., Mohamed H. A., Gaeid K. S., 2010. Flight PID controller design for a UAV quadrotor. Scientific Research and Essays 5(23), 3660-3667. | es_ES |