- -

Decodificación de Movimientos Individuales de los Dedos y Agarre a Partir de Señales Mioeléctricas de Baja Densidad

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Decodificación de Movimientos Individuales de los Dedos y Agarre a Partir de Señales Mioeléctricas de Baja Densidad

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Villarejo Mayor, John J. es_ES
dc.contributor.author Mamede Costa, Regina es_ES
dc.contributor.author Frizera Neto, Anselmo es_ES
dc.contributor.author Freire Bastos, Teodiano es_ES
dc.date.accessioned 2020-05-18T08:18:52Z
dc.date.available 2020-05-18T08:18:52Z
dc.date.issued 2017-04-03
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143518
dc.description.abstract [ES] Uno de los principales retos en el diseño de prótesis de mano es poder establecer un control intuitivo que reduzca el esfuerzo del usuario durante su entrenamiento. Este trabajo presenta un esquema para identificar tareas de motricidad fina de la mano, agrupadas en movimientos de los dedos individuales y gestos para el agarre de objetos el cual se ha validado con sujetos amputados. Se han comparado diferentes métodos de selección de características y clasificadores para el reconocimiento de patrones mioeléctricos, utilizando cuatro electrodos superficiales. Las características de las señales en el dominio del tiempo y la frecuencia se han combinado con métodos no lineales basados en análisis de fractales, mostrando una diferencia significativa en comparación con los métodos expuestos en la literatura para clasificar tareas de fuerza. Los resultados con amputados mostraron una exactitud de hasta 99,4% en los movimientos individuales de los dedos, superior a la obtenida con los gestos de agarre, de hasta 93,3%. El sistema ha obtenido una tasa de acierto promedio de 86,3% utilizando máquinas de soporte vectorial (SVM), seguido muy de cerca por K-vecinos más cercanos (KNN) con 83,4%. Sin embargo, KNN ha obtenido un mejor rendimiento global, debido a que es más rápido que SVM, lo que representa una ventaja para aplicaciones en tiempo real. El método aquí propuesto ofrece una mayor funcionalidad en el control de prótesis de mano, lo que mejoraría su aceptación por parte de los amputados. es_ES
dc.description.abstract [EN] Intuitive prosthesis control is one of the most important challenges in order to reduce the user effort in learning to use an artificial hand. This work presents the development of a myoelectric pattern recognition system for myoelectric weak signals able to discriminate dexterous hand movements using a reduced number of electrodes. The system was evaluated in six forearm amputees and the results were compared with the performance of able-bodied subjects. Different methods were analyzed to classify individual fingers flexion, hand gestures and different grasps using four electrodes and considering the low level of muscle contraction in these tasks. Multiple features of sEMG signals were also analyzed considering traditional magnitude-based features and fractal analysis. Statistical significance was computed for all the methods using different set of features, for both groups of subjects (able-bodied and amputees). For amputees, results showed accuracy up to 99.4% for individual finger movements, higher than the achieved by grasp movements, up to 93.3%. Best performance was achieved using support vector machine (SVM), followed very closely by K-nearest neighbors (KNN). However, KNN produces a better global performance because it is faster than SVM, which implies an advantage for real-time applications. The results show that the method here proposed is suitable for accurately controlling dexterous prosthetic hands, providing more functionality and better acceptance for amputees. es_ES
dc.description.sponsorship Este trabajo ha sido patrocinado por CAPES y FAPES/Brasil (Proyecto Número 007/2014: Use of Robotics and Assistive Technology for Children and Adults with Disabilities). es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Señales electromiográficas es_ES
dc.subject Prótesis de miembro superior es_ES
dc.subject Reconocimiento de patrones es_ES
dc.subject Tareas de destreza de la mano es_ES
dc.subject Myoelectric signals es_ES
dc.subject Upper-limb prosthesis es_ES
dc.subject Superficial electromyography low density es_ES
dc.subject Dexterous hand gestures es_ES
dc.subject Pattern recognition es_ES
dc.title Decodificación de Movimientos Individuales de los Dedos y Agarre a Partir de Señales Mioeléctricas de Baja Densidad es_ES
dc.title.alternative Decoding of Grasp and Individuated Finger Movements Based on Low-Density Myoelectric Signals es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2017.02.001
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//FAPES%2F007%2F2014/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Villarejo Mayor, JJ.; Mamede Costa, R.; Frizera Neto, A.; Freire Bastos, T. (2017). Decodificación de Movimientos Individuales de los Dedos y Agarre a Partir de Señales Mioeléctricas de Baja Densidad. Revista Iberoamericana de Automática e Informática industrial. 14(2):184-192. https://doi.org/10.1016/j.riai.2017.02.001 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2017.02.001 es_ES
dc.description.upvformatpinicio 184 es_ES
dc.description.upvformatpfin 192 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9223 es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Fundação de Amparo à Pesquisa e Inovação do Espírito Santo, Brasil es_ES
dc.description.references Al-Timemy, A., Bugmann, G., Escudero, J., Outram, N., 2013. Classification of finger movements for the dexterous hand prosthesis control with surface electromyography. IEEE Journal of Biomedical and Health Informatics 17(3), 608-618. DOI:10.1109/JBHI.2013.2249590 es_ES
dc.description.references Arjunan, S., Kumar, D., 2010. Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors. Journal of Neuroengineering and Rehabilitation 7(1), 53. DOI: 10.1186/1743-0003-7-53 es_ES
dc.description.references Burck, J., Bigelow, J., Harshbarger, S., 2011. Revolutionizing prosthetics: systems engineering challenges and opportunities. Johns Hopkins APL Tech Dig 30(3), 186-197. es_ES
dc.description.references Castro, M., Arjunan, S., Kumar, D., 2015. Selection of suitable hand gestures for reliable myoelectric human computer interface. BioMedical Engineering OnLine 14(1), 1-11. DOI: 10.1186/s12938-015-0025-5 es_ES
dc.description.references Ceres, R., Pons, J., Calderón, L., Moreno, J., 2008. La robótica en la discapacidad. Desarrollo de la prótesis diestra de extremidad inferior manus-hand. Revista Iberoamericana de Automática E Informática Industrial RIAI 5(2), 60-68. DOI: 10.1016/S1697-7912(08)70145-6 es_ES
dc.description.references Chowdhury, R., Reaz, M., Ali, M., Bakar, A., Chellappan, K., Chang, T., 2013. Surface electromyography signal processing and classification techniques. Sensors 13(9), 12431-66. DOI: 10.3390/s130912431 es_ES
dc.description.references Cipriani, C., Antfolk, C., Controzzi, M., Lundborg, G., Rosen, B., Carrozza, M., Sebelius, F., 2011. Online myoelectric control of a dexterous hand prosthesis by transradial amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering 19(3), 260-270. DOI: 10.1109/TNSRE.2011.2108667 es_ES
dc.description.references Englehart, K., Hudgins, B., Parker, P., 2001. A wavelet-based continuous classification scheme for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering 48(3), 302-311. DOI: 10.1109/10.914793 es_ES
dc.description.references Guo, S., Pang, M., Gao, B., Hirata, H., Ishihara, H., 2015. Comparison of sEMG-Based Feature Extraction and Motion Classification Methods for Upper-Limb Movement. Sensors 15(4), 9022-38. DOI: 10.3390/s150409022 es_ES
dc.description.references Hermens, H. J., Freriks, B., Disselhorst-Klug, C., Rau, G., 2000. Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology 10(5), 361-374. DOI: 10.1016/S1050-6411(00)00027-4 es_ES
dc.description.references Hu, K., Ivanov, P., Chen, Z., Carpena, P., Stanley, H., 2001. Effect of trends on detrended fluctuation analysis. Physical Review. E 64, 11114. DOI: 10.1103/PhysRevE.64.011114 es_ES
dc.description.references Hudgins, B., Parker, P., Scott, R., 1993. A new strategy for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering 40(1), 82-94. DOI: 10.1109/10.204774 es_ES
dc.description.references Japkowicz, N., Shah, M., 2014. Evaluation learning algorithms: a classification perspective. Cambridge University Press. New York, NY, USA. es_ES
dc.description.references Kanitz, G., Antfolk, C., Cipriani, C., Sebelius, F., Carrozza, M., 2011. Decoding of individuated finger movements using surface EMG and input optimization applying a genetic algorithm. Annual International Conference of the IEEE Engineering in Medicine and Biology Society 33, 1608-11. DOI: 10.1109/IEMBS.2011.6090465 es_ES
dc.description.references Khushaba, R., Kodagoda, S., Takruri, M., Dissanayake, G., 2012. Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals. Expert Systems with Applications 39(12), 10731-10738. DOI: 10.1016/j.eswa.2012.02.192 es_ES
dc.description.references Kumar, D., Arjunan, S., Singh, V., 2013. Towards identification of finger flexions using single channel surface electromyography - able bodied and amputee subjects. Journal of Neuroengineering and Rehabilitation 10(1), 50. DOI: 10.1186/1743-0003-10-50 es_ES
dc.description.references Light, C., Chappell, P., Hudgins, B., Engelhart, K., 2002. Intelligent multifunction myoelectric control of hand prostheses. Journal of Medical Engineering & Technology 26(4), 139-146. DOI: 10.1080/03091900210142459 es_ES
dc.description.references Losier, Y., Clawson, A., Wilson, A., Scheme, E., Englehart, K., Kyberd, P., Hudgins, B., 2011. An overview of the UNB hand system. Proceedings of the 2011 MyoElectric Controls/Powered Prosthetics Symposium Fredericton, 2-5. es_ES
dc.description.references Matrone, G., Cipriani, C., Carrozza, M., Magenes, G., 2012. Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis. Journal of NeuroEngineering and Rehabilitation 9(1), 40. DOI: 10.1186/1743-0003-9-40 es_ES
dc.description.references Naik, G., Kumar, D., Arjunan, S., 2010. Pattern classification of myoelectrical signal during different maximum voluntary contractions: a study using BSS techniques. Measurement Science Review 10(1), 1-6. DOI: 10.2478/v10048-010-0001-y es_ES
dc.description.references Oskoei, M., Hu, H., 2008. Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb. IEEE Transactions on Biomedical Engineering 55(8), 1956-1965. DOI: 10.1109/TBME.2008.919734 es_ES
dc.description.references Peerdeman, B., Boere, D., Witteveen, H., Huis R., Hermens, H., Stramigioli, S., Misra, S., 2011. Myoelectric forearm prostheses: state of the art from a user-centered perspective. The Journal of Rehabilitation Research and Development 48(6), 719. DOI: 10.1682/JRRD.2010.08.0161 es_ES
dc.description.references Peleg, D., Braiman, E., Yom-Tov, E., Inbar, G., 2002. Classification of finger activation for use in a robotic prosthesis arm. IEEE Transactions on Neural Systems and Rehabilitation Engineering 10(4), 290-293. DOI: 10.1109/TNSRE.2002.806831 es_ES
dc.description.references Phinyomark, A., Phukpattaranont, P., Limsakul, C., 2012a. Fractal analysis features for weak and single-channel upper-limb EMG signals. Expert Systems with Applications 39(12), 11156-11163. DOI: 10.1016/j.eswa.2012.03.039 es_ES
dc.description.references Phinyomark, A., Phukpattaranont, P., Limsakul, C., 2012b. Feature reduction and selection for EMG signal classification. Expert Systems with Applications 39(8), 7420-7431. DOI: 10.1016/j.eswa.2012.01.102 es_ES
dc.description.references Pons, J., Ceres, R., Rocon, E., Levin, S., Markovitz, I., Saro, B., Bueno, L., 2005. Virtual reality training and EMG control of the MANUS hand prosthesis. Robotica 23(3), 311-317. DOI: 10.1017/S026357470400133X es_ES
dc.description.references Sensinger, J., Lock, B., Kuiken, T., 2009. Adaptive pattern recognition of myoelectric signals: exploration of conceptual framework and practical algorithms. IEEE Transactions on Neural Systems and Rehabilitation Engineering 17(3), 270-278. DOI: 10.1109/TNSRE.2009.2023282 es_ES
dc.description.references Tenore, F., Ramos, A., Fahmy, A., Acharya, S., Etienne-Cummings, R., Thakor, N., 2009. Decoding of individuated finger movements using surface electromyography. IEEE Transactions on Biomedical Engineering 56(5), 1427-1434. DOI: 10.1109/TBME.2008.2005485 es_ES
dc.description.references Theodoridis, S., Koutroumbas, K., 2008. Pattern Recognition. Academic press. es_ES
dc.description.references Tsenov, G., Zeghbib, A., Palis, F., Shoylev, N., Mladenov, V., 2006. Neural networks for online classification of hand and finger movements using surface EMG signals. 8th Seminar on Neural Network Applications in Electrical Engineering (NEUREL), 167-171. DOI: 10.1109/NEUREL.2006.341203 es_ES
dc.description.references Villarejo, J., Costa, R., Bastos, T., Frizera, A., 2014. Identification of low level semg signals for individual finger prosthesis. Biosignals and Biorobotics Conference. Biosignals and Robotics for Better and Safer Living (BRC), 5th ISSNIP-IEEE. DOI: 10.1109/BRC.2014.6880991 es_ES
dc.description.references Villarejo, J., Frizera, A., Bastos, T., Sarmiento, J., 2013. Pattern recognition of hand movements with low density sEMG for prosthesis control purposes. IEEE International Conference on Rehabilitation Robotics 1-6. DOI: 10.1109/ICORR.2013.6650361 es_ES
dc.description.references Villarejo, J., Mamede, R., Bastos, T., 2014. Movement Identification using weak sEMG signals of low density for upper limb control. En: Andrade, A., Barbosa, A., Cardoso, A., Lamounier, E. Tecnologias, técnicas e tendências em engenharia biomédica. Canal6 Edi, p. 280-300. es_ES
dc.description.references Yang, D., Zhao, J., Gu, Y., Wang, X., Li, N., Jiang, L., Zhao, D., 2009. An anthropomorphic robot hand developed based on underactuated mechanism and controlled by EMG signals. Journal of Bionic Engineering 6(3), 255-263. DOI: 10.1016/S1672-6529(08)60119-5 es_ES
dc.description.references Zecca, M., Micera, S., Carrozza, M., Dario, P., 2002. Control of multifunctional prosthetic hands by processing the electromyographic signal. Critical Reviews in Biomedical Engineering 30(4-6), 459-485. DOI: 10.1615/CritRevBiomedEng.v30.i456.80 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem