- -

Análisis de la implementación software de un conformador de señales ultrasónicas para tiempo real

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Análisis de la implementación software de un conformador de señales ultrasónicas para tiempo real

Mostrar el registro completo del ítem

Romero Laorden, D.; Villazón Terrazas, J.; Santos Peñas, M.; García Izquierdo, M.; Martínez Graullera, O. (2016). Análisis de la implementación software de un conformador de señales ultrasónicas para tiempo real. Revista Iberoamericana de Automática e Informática industrial. 13(4):462-471. https://doi.org/10.1016/j.riai.2016.05.006

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143554

Ficheros en el ítem

Metadatos del ítem

Título: Análisis de la implementación software de un conformador de señales ultrasónicas para tiempo real
Otro titulo: Analysis of a software implementation of an ultrasonic signal beamformer in real-time
Autor: Romero Laorden, D. Villazón Terrazas, J. Santos Peñas, M. García Izquierdo, M.A. Martínez Graullera, O.
Fecha difusión:
Resumen:
[ES] Este trabajo analiza la implementación software en un sistema de imagen ultrasónica del Total Focusing Method para la compensación dinámica en tiempo real de los tiempos de vuelo para emisión y recepción de todos los ...[+]


[EN] This paper studies the software implementation in an ultrasonic imaging system of Total Focusing Method. In order to accomplish real-time requirements parallel programming techniques have been used. Then, using GPGPU ...[+]
Palabras clave: Ultrasonic imaging , GPU , Signal Processing , Parallel computing , CUDA , Imagen Ultrasónica , Procesamiento de señal , Computación Paralela
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2016.05.006
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.1016/j.riai.2016.05.006
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2010-19376/ES/TECNICAS DE APERTURA SINTETICA MULTIELEMENTO EN ARRAYS DISPERSOS BIDIMENSIONALES PARA LA OBTENCION DE IMAGEN ULTRASONICA EN TIEMPO REAL/
info:eu-repo/grantAgreement/MINECO//FIS2013-46829-R/ES/METODOS ADAPTATIVOS DE CONFORMACION DE HAZ PARA IMAGEN ACUSTICA/
Agradecimientos:
Este trabajo ha sido desarrollado bajo los proyectos DPI2010- 19376 y FIS2013-46829R.
Tipo: Artículo

References

Birk, M., et al., 2011. Acceleration of image reconstruction in 3D ultrasound computer tomography: An evaluation of CPU, GPU and FPGA computing. In: Conference on Design and Architectures for Signal and Image Processing (DASIP). Tampere, pp. 1-8.

Camacho, et al., 2007. A strict-time distributed architecture for digital beamforming of ultrasound signals. In: Intelligent Signal Processing, 2007. WISP 2007. IEEE International Symposium on. pp. 1-6.

Camacho, J., 2010. Imagen ultrasonica por coherencia de fase. Ph.D. thesis, ' Facultad de Ciencias Físicas. [+]
Birk, M., et al., 2011. Acceleration of image reconstruction in 3D ultrasound computer tomography: An evaluation of CPU, GPU and FPGA computing. In: Conference on Design and Architectures for Signal and Image Processing (DASIP). Tampere, pp. 1-8.

Camacho, et al., 2007. A strict-time distributed architecture for digital beamforming of ultrasound signals. In: Intelligent Signal Processing, 2007. WISP 2007. IEEE International Symposium on. pp. 1-6.

Camacho, J., 2010. Imagen ultrasonica por coherencia de fase. Ph.D. thesis, ' Facultad de Ciencias Físicas.

FFTW, 2015. Library fast fft.

Hansen, J. M., et al., 2011. An object-oriented multi-threaded software beamformation toolbox. In: D'hooge, J., Doyley, M. M. (Eds.), SPIE Medical Imaging: Ultrasonic Imaging, Tomography, and Therapy. pp. 79680Y- 79680Y-9.

Holmes, C., Bruce W. Drinkwater, Wilcox, P. D., Dec. 2005. Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation. NDT & E International 38 (8), 701-711.

Holmes, C., Drinkwater, B. W., Wilcox, P. D., Nov. 2008. Advanced postprocessing for scanned ultrasonic arrays: application to defect detection and classification in non-destructive evaluation. Ultrasonics 48 (6-7), 636-42.

Hunter, A. J., Drinkwater, B. W., Wilcox, P. D., Nov. 2008. The wavenumber algorithm for full-matrix imaging using an ultrasonic array. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 55 (11), 2450-62.

Jensen, J., Holm, O., Jerisen, L., Bendsen, H., Nikolov, S., Tomov, B., Munk, P., Hansen, M., Salomonsen, K., Hansen, J., Gormsen, K., Pedersen, H., Gammelmark, K., May 2005. Ultrasound research scanner for real-time synthetic aperture data acquisition. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on 52 (5), 881-891.

Kortbek, J.,, et al., 2007. Effective and versatile software beamformation toolbox Jacob. In: Emelianov, S. Y., McAleavey, S. A. (Eds.), Medical Imaging 2007: Ultrasonic Imaging and Signal Processing.

M2M, 2015. Gekko: Advanced phased-array ut.

Martín-Arguedas, C. J., 2010. Tecnicas de apertura sint ' etica para la generaci ' on' de imagen ultrasonica. Ph.D. thesis, Universidad de Alcalá.

Nikolov, S. I., 2001. Synthetic aperture tissue and flow ultrasound imaging. Ph.D. thesis, Technical University of Denmark.

Nilsen, C.-I. C., Hafizovic, I., Apr. 2009. Digital beamforming using a GPU. In: IEEE International Conference on Acoustics, Speech and Signal Processing. Ieee, pp. 609-612.

NVIDIA, 2014. CUDA C Programming Guide 6.0. No. February 2014.

Oppenheim, A. V., et al., 1989. Discrete-Time Signal Processing. Vol. 23. Prentice-Hall, Upper Saddle River, New Jersey.

Parrilla, M., 2004. Conformacion de haces ultras ' onicos mediante muestreo se- ' lectivo con codificacion delta. Ph.D. thesis, UPM.

Romero-Laorden, D., et al., 2009. Using GPUs for beamforming acceleration on SAFT imaging. In: IEEE International Ultrasonics Symposium. IEEE, Rome, Italy, pp. 1334-1337.

Romero-Laorden, D., et al., 2011. Paralelizacion de los procesos de confor- ' macion de haz para la implementación del Total Focusing Method. In: 12 ' Congreso Español de END. Valencia.

Romero-Laorden, D., et al., Apr. 2012. Paralelizacion de los procesos de con- ' formacion de haz para imagen ultras ' onica con t ' ecnicas GPGPU. RIAI 9 (2), ' 144-151.

Rougeron, G., et al., 2013. Implementation of a GPU Accelerated Total Focusing Reconstruction Method within CIVA Software. 40th Annual Review of Progress in Quantitative Nondestructive Evaluation 1581 (1), 1983-1990.

Siritan, T., et al., 2013. Beamforming Complexity Reduction Methods for LowCost FPGA-based Implementation. In: Biomedical Engineering International Conference (BMEiCON-2013). pp. 2-5.

So, H. K. H., Chen, J., Yiu, B. Y. S., Yu, A. C. H., 2011. Medical Ultrasound Imaging: To GPU or not to GPU. IEEE Micro 31 (5), 54-65.

Sutcliffe, M., et al., 2012. Real-time full matrix capture for ultrasonic nondestructive testing with acceleration of post-processing through graphic hardware. NDT & E International 51, 16-23.

Szabo, T. L., 2004. Diagnostic Ultrasound Imaging. Elsevier.

Wall, K., Lockwood, G. R., 2005. Modern Implementation of a Realtime 3D Beamformer and Scan Converter System. In: IEEE International Ultrasonics Symposium. Vol. 00. pp. 1400-1403.

Wang, L., et al., May 2011. Real-Time Scan Conversion for Ultrasound Imaging Based on CUDA with Direct3D Display. In: Conference on Bioinformatics and Biomedical Engineering (iCBBE). Ieee, pp. 1-4.

Zhang, F., et al., 2002. Parallelization and Performance of 3D Ultrasound Imaging Beamforming Algorithms on Modern Clusters. In: Proceedings of the 16th international conference on Supercomputing. pp. 294-304.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem