- -

Control de Modelos Max Plus Lineales con Restricciones Temporales

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Control de Modelos Max Plus Lineales con Restricciones Temporales

Show simple item record

Files in this item

dc.contributor.author Cárdenas, C. es_ES
dc.contributor.author Cardillo, J. es_ES
dc.contributor.author Loiseau, J.J. es_ES
dc.contributor.author Martínez, C. es_ES
dc.date.accessioned 2020-05-18T11:18:01Z
dc.date.available 2020-05-18T11:18:01Z
dc.date.issued 2016-10-10
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143556
dc.description.abstract [ES] Este artículo trata del control de sistemas de eventos discretos sujetos a sincronización y fenómenos de retraso, descritos por un modelo max plus lineal. Definimos y caracterizamos el conjunto de condiciones iniciales admisibles, las cuales originan soluciones no decrecientes. Restricciones temporales son impuestas al espacio de estado del sistema. Estas restricciones son descritas en el cono max plus definido por la imagen de la estrella de Kleene de la matriz asociada a las restricciones temporales. Propiedades geométricas de este cono max plus, para garantizar que la evolución del sistema en lazo cerrado satisface las restricciones, son estudiadas. Condiciones suficientes concernientes a la existencia y cálculo de una retroalimentación de estado son presentadas. Para ilustrar la aplicación de este enfoque, dos problemas de control son discutidos, para los cuales un controlador es diseñado con el objetivo de garantizar la satisfacción de las restricciones temporales. es_ES
dc.description.abstract [EN] This article deals with the control of discrete event systems subject to synchronization and delay phenomena, described by a plus max linear model. The temporal constraints are imposed on the state space of the system. These constraints are described in the max plus cone defined by the image of the Kleene star of the matrix associated with the temporal constraints. In consequence, the problem of determining a control that force the satisfaction of time constraints, is formulated in terms of the invariance of the cone. Sufficient conditions for the existence of a solution to this problem have been established. Our approach allows the design of a satisfactory control of the form of a static state feedback. We emphasize that our solution takes into account two aspects which are the initialization of the control law, and its causality, important for its implementation. To illustrate the application of this approach, two control problems are presented. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Discrete Event Systems es_ES
dc.subject Timed Event Graphs es_ES
dc.subject Max Plus Algebra es_ES
dc.subject Temporal Constraints es_ES
dc.subject Sistemas de Eventos Discretos (SED) es_ES
dc.subject Grafos de Eventos Temporizados (GETs) es_ES
dc.subject Algebra Max Plus es_ES
dc.subject Restricciones Temporales es_ES
dc.title Control de Modelos Max Plus Lineales con Restricciones Temporales es_ES
dc.title.alternative Control Problem in Max Plus Linear Model with Temporal Constraints es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2016.07.001
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Cárdenas, C.; Cardillo, J.; Loiseau, J.; Martínez, C. (2016). Control de Modelos Max Plus Lineales con Restricciones Temporales. Revista Iberoamericana de Automática e Informática industrial. 13(4):438-449. https://doi.org/10.1016/j.riai.2016.07.001 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2016.07.001 es_ES
dc.description.upvformatpinicio 438 es_ES
dc.description.upvformatpfin 449 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9258 es_ES
dc.relation.references Allamigeon, X., Gaubert, S., Goubault, E., 2010. "The tropical double descrip- ' tion method", in Proc. Symp. Theor. Aspects Comp. Sci., Nancy, France, pp. 47-58. es_ES
dc.relation.references Allamigeon, X., Gaubert, S., Goubault, E., 2012. Computing the ' vertices of tropical polyhedra using directed hypergraphs, Discrete Comput. Geom. es_ES
dc.relation.references Amari, S., Demongodin, I., Loiseau, J. J., Martinez, C., 2012. Max-plus control design for temporal constraints meeting in timed event graphs, IEEE Trans. Automatic Control, Vol. 57, No. 2, pp. 462-467. es_ES
dc.relation.references Atto A., Martinez C., Amari S., 2011. Control of discrete event systems with respect to strict duration: supervision of an industrial manufacturing plant. Comput Inf Syst 61(4):1149-1159. es_ES
dc.relation.references Baccelli, F., Cohen, G., Olsder, G.-J., Quadrat, J.-P., 1992. Synchronization and Linearity. John Wiley & Sons, New York. es_ES
dc.relation.references Cohen, G., Gaubert, S., Quadrat, J. P.,1999. "Max-plus algebra and system theory: where we are and where to go now,"Annu. Rev. Control, vol. 23, pp. 207-219. es_ES
dc.relation.references Cohen, G., 2001. Analisis ' y Control de sistemas de eventos discretos: De redes de Petri temporizadas. Argentina: ENPC & INRIA (Francia). es_ES
dc.relation.references Gaubert, S., Katz, R., 2007. The Minkowski theorem for max-plus convex sets. Linear Algebra and Appl., 421:356-369. es_ES
dc.relation.references Gaubert, S., Katz, R., 2009. The tropical analogue of polar cones. Linear Algebra and Appl., 431:608-625. es_ES
dc.relation.references Gaubert, S., Katz, R., 2011. Minimal half-spaces and external representation of tropical polyhedra, Journal of Algebraic Combinatorics 33, no. 3, 325348. es_ES
dc.relation.references Katz, R. D., 2007. Max-plus (A,B)-invariant spaces and control of timed discrete-event systems, IEEE Trans. Automatic Control, Vol. 52, No. 2, pp. 229-241. es_ES
dc.relation.references Kim, J. H., Lee, T. E. 2003. Schedule stabilization and robust timing control for time-constrained cluster tools. In IEEE international conference on robotics and automation, pp. 1039-1044. Taipei, Taiwan. es_ES
dc.relation.references Libeaut, L., Loiseau, J., 1995. Admissible initial conditions and control of timed event graphs, 34th Conference on Decision and Control, New Orleans, Louisianna. es_ES
dc.relation.references Maia, C., Andrade, C., Hardouin, L., 2011. On the control of max plus linear system subject to state restriction. Automatica 47(5): 988-992. es_ES
dc.relation.references Murata, T., 1989. Petri nets: Properties, analysis and applications. IEEE, Proc 77(4), 541-580. es_ES
dc.relation.references Wonham, W. M., Linear Multivariable Control: A Geometric Approach, 3rd ed. New York: Springer-Verlag. es_ES
dc.relation.references Wu, N., Chu, C., Chu, F., Zhou, M. 2008. A Petri net method for schedulability and scheduling problems in single-arm cluster tools with wafer residency time constraints, IEEE Trans. Semiconduct. Manuf., vol. 21, pp. 224-237. es_ES


This item appears in the following Collection(s)

Show simple item record