- -

Algorithm for Assessing the Convergence of a Cyclic Voltammetry to Its Limit Cycle

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Algorithm for Assessing the Convergence of a Cyclic Voltammetry to Its Limit Cycle

Mostrar el registro completo del ítem

Giner-Sanz, JJ.; Ortega Navarro, EM.; García Gabaldón, M.; Pérez-Herranz, V. (2019). Algorithm for Assessing the Convergence of a Cyclic Voltammetry to Its Limit Cycle. Journal of The Electrochemical Society. 166(6):H224-H232. https://doi.org/10.1149/2.1111906jes

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143620

Ficheros en el ítem

Metadatos del ítem

Título: Algorithm for Assessing the Convergence of a Cyclic Voltammetry to Its Limit Cycle
Autor: Giner-Sanz, Juan José Ortega Navarro, Emma María García Gabaldón, Montserrat Pérez-Herranz, Valentín
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] Cyclic voltammetry is one of today's standard electrochemical measurement techniques. What characterizes cyclic voltammetry is that potential is linearly ramped in cycles. In general, in this kind of measurements, the ...[+]
Palabras clave: Electrodes , Carbon , Nanocomposite , Parameters , Battery , Cathode , Sensor , Alloy , SNO2
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of The Electrochemical Society. (issn: 0013-4651 )
DOI: 10.1149/2.1111906jes
Editorial:
The Electrochemical Society
Versión del editor: https://doi.org/10.1149/2.1111906jes
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-1-R/ES/CARACTERIZACION ELECTROQUIMICA DE ELECTRODOS CERAMICOS Y APLICACION A PROCESOS ELECTROQUIMICOS DE OXIDACION AVANZADA/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F001/
Agradecimientos:
The authors are very grateful to the Generalitat Valenciana (Vali+d postdoctoral grant APOSTD/2018/001), to the Ministerio de Economia y Competitividad (Project CTQ2015-65202-C2-1-R), to the European Regional Development ...[+]
Tipo: Artículo

References

Zoski C. G. , Handbook of electrochemistry, Elsevier, Paris (2007).

Skoog D. A. West D. M. Holler F. J. Crouch S. , Fundamentals of analytical chemistry, Brook & Cole, New York (2013).

Sides, W., Kassouf, N., & Huang, Q. (2019). Electrodeposition of Ferromagnetic FeCo and FeCoMn Alloy from Choline Chloride Based Deep Eutectic Solvent. Journal of The Electrochemical Society, 166(4), D77-D85. doi:10.1149/2.0181904jes [+]
Zoski C. G. , Handbook of electrochemistry, Elsevier, Paris (2007).

Skoog D. A. West D. M. Holler F. J. Crouch S. , Fundamentals of analytical chemistry, Brook & Cole, New York (2013).

Sides, W., Kassouf, N., & Huang, Q. (2019). Electrodeposition of Ferromagnetic FeCo and FeCoMn Alloy from Choline Chloride Based Deep Eutectic Solvent. Journal of The Electrochemical Society, 166(4), D77-D85. doi:10.1149/2.0181904jes

Zhang, S. S., Chen, J., & Wang, C. (2019). Elemental Sulfur as a Cathode Additive for Enhanced Rate Capability of Layered Lithium Transition Metal Oxides. Journal of The Electrochemical Society, 166(4), A487-A492. doi:10.1149/2.0101904jes

Meng, Z., Huang, Y., Li, J., Yang, R., Wang, X., Guo, Y., … Wang, L. (2019). Deposition of Cross-Linked Dopamine and Polyethylenimine on Polypropylene Separators via One-Step Soaking Method for Li-S Batteries. Journal of The Electrochemical Society, 166(4), A546-A550. doi:10.1149/2.0351904jes

Watanabe, S., Mori, D., Taminato, S., Matsuda, Y., Yamamoto, O., Takeda, Y., & Imanishi, N. (2019). Aqueous Lithium Rechargeable Battery with a Tin(II) Chloride Aqueous Cathode and a Water-Stable Lithium-Ion Conducting Solid Electrolyte. Journal of The Electrochemical Society, 166(4), A539-A545. doi:10.1149/2.0331904jes

Zhou, X., Pu, T., Yang, G., Ma, W., Yang, B., & Dai, Y. (2019). Origin and Effect of Oxygen Defect in Li4Ti5O12 Prepared with Carbon Source. Journal of The Electrochemical Society, 166(4), A448-A454. doi:10.1149/2.0011904jes

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model. Fuel Cells, 15(3), 479-493. doi:10.1002/fuce.201400163

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2014). Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 39(25), 13206-13216. doi:10.1016/j.ijhydene.2014.06.157

Naresh, V., & Martha, S. K. (2019). Carbon Coated SnO2 as a Negative Electrode Additive for High Performance Lead Acid Batteries and Supercapacitors. Journal of The Electrochemical Society, 166(4), A551-A558. doi:10.1149/2.0291904jes

Fan, T., Sun, P., Zhao, J., Cui, Z., & Cui, G. (2019). Facile Synthesis of Three-Dimensional Ordered Porous Amorphous Ni-P for High-Performance Asymmetric Supercapacitors. Journal of The Electrochemical Society, 166(2), D37-D43. doi:10.1149/2.0521902jes

Xu, L., Wang, Y., Xu, Q., & Duan, H. (2019). Comparison of the Properties of Low-Dimensional Nano-Ti/SnO2-Sb-Fe Electrodes Prepared by Different Methods. Journal of The Electrochemical Society, 166(4), E69-E76. doi:10.1149/2.0051904jes

Sánchez‐Rivera, M., Giner‐Sanz, J. J., Pérez‐Herranz, V., & Mestre, S. (2018). CuO improved (Sn,Sb)O2ceramic anodes for electrochemical advanced oxidation processes. International Journal of Applied Ceramic Technology, 16(3), 1274-1285. doi:10.1111/ijac.13149

Giner‐Sanz, J. J., Sánchez‐Rivera, M. J., García‐Gabaldón, M., Ortega, E. M., Mestre, S., & Pérez‐Herranz, V. (2019). Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes. ChemElectroChem, 6(9), 2430-2437. doi:10.1002/celc.201801766

Dong, S., Cui, H., Zhang, D., & Tong, M. (2019). C-reactive Protein and Glucose Electrochemical Sensors Based on Zr(IV) Organic Framework with 2,5-thiophenedicarboxylate Anion. Journal of The Electrochemical Society, 166(4), B193-B199. doi:10.1149/2.0171904jes

Wu, J., Zhu, Y., Yan, K., & Zhang, J. (2019). Photovoltammetry of p-Phenylenediamine Mediated by Hexacyanoferrate Immobilized on CdS-Graphene Nanocomposites. Journal of The Electrochemical Society, 166(4), H87-H93. doi:10.1149/2.0041904jes

Atta, N. F., Galal, A., El-Ads, E. H., & Galal, A. E. (2019). New Insight in Fabrication of a Sensitive Nano-Magnetite/Glutamine/Carbon Based Electrochemical Sensor for Determination of Aspirin and Omeprazole. Journal of The Electrochemical Society, 166(2), B161-B172. doi:10.1149/2.1241902jes

Ma, K., Sinha, A., Dang, X., & Zhao, H. (2019). Electrochemical Preparation of Gold Nanoparticles-Polypyrrole Co-Decorated 2D MoS2 Nanocomposite Sensor for Sensitive Detection of Glucose. Journal of The Electrochemical Society, 166(2), B147-B154. doi:10.1149/2.1231902jes

Osti, N. C., Dyatkin, B., Gallegos, A., Voneshen, D., Keum, J. K., Littrell, K., … Mamontov, E. (2019). Cation Molecular Structure Affects Mobility and Transport of Electrolytes in Porous Carbons. Journal of The Electrochemical Society, 166(4), A507-A514. doi:10.1149/2.0131904jes

Loguercio, L. F., de Matos, C. F., de Oliveira, M. C., Marin, G., Khan, S., Dupont, J., … Santos, M. J. L. (2019). Polypyrrole/Ionic Liquid/Au Nanoparticle Counter-Electrodes for Dye-Sensitized Solar Cells: Improving Charge-Transfer Resistance at the CE/Electrolyte Interface. Journal of The Electrochemical Society, 166(5), H3188-H3194. doi:10.1149/2.0271905jes

Thomas, S., Kowalski, D., Molinari, M., & Mallet, J. (2018). Role of electrochemical process parameters on the electrodeposition of silicon from 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid. Electrochimica Acta, 265, 166-174. doi:10.1016/j.electacta.2018.01.139

Zhang, Q., Liu, X., Yin, L., Chen, P., Wang, Y., & Yan, T. (2018). Electrochemical impedance spectroscopy on the capacitance of ionic liquid–acetonitrile electrolytes. Electrochimica Acta, 270, 352-362. doi:10.1016/j.electacta.2018.03.059

Viada, B. N., Juárez, A. V., Pachón Gómez, E. M., Fernández, M. A., & Yudi, L. M. (2018). Determination of the critical micellar concentration of perfluorinated surfactants by cyclic voltammetry at liquid/liquid interfaces. Electrochimica Acta, 263, 499-507. doi:10.1016/j.electacta.2017.11.053

Vijayakumar, E., Yun, Y.-H., Quy, V. H. V., Lee, Y.-H., Kang, S.-H., Ahn, K.-S., & Lee, S. W. (2019). Development of Tungsten Trioxide Using Pulse and Continuous Electrodeposition and Its Properties in Electrochromic Devices. Journal of The Electrochemical Society, 166(4), D86-D92. doi:10.1149/2.0271904jes

Kosswattaarachchi, A. M., VanGelder, L. E., Nachtigall, O., Hazelnis, J. P., Brennessel, W. W., Matson, E. M., & Cook, T. R. (2019). Transport and Electron Transfer Kinetics of Polyoxovanadate-Alkoxide Clusters. Journal of The Electrochemical Society, 166(4), A464-A472. doi:10.1149/2.1351902jes

Tang, B., Zhou, J., Fang, G., Guo, S., Guo, X., Shan, L., … Liang, S. (2019). Structural Modification of V2O5 as High-Performance Aqueous Zinc-Ion Battery Cathode. Journal of The Electrochemical Society, 166(4), A480-A486. doi:10.1149/2.0081904jes

Li, Y., Zhang, Y., Ma, J., Yang, L., Li, X., Zhao, E., … Yang, C. (2019). Synthesis of LiFePO4 Nanocomposite with Surface Conductive Phase by Zr Doping with Li Excess for Fast Discharging. Journal of The Electrochemical Society, 166(2), A410-A415. doi:10.1149/2.1331902jes

Li, M., Li, Y., & Wang, Z. (2019). Electrochemical Reduction of Zirconium Oxide and Co-Deposition of Al-Zr Alloy from Cryolite Molten Salt. Journal of The Electrochemical Society, 166(2), D65-D68. doi:10.1149/2.1291902jes

Du, L., Wu, W., Luo, C., Xu, D., Guo, H., Wang, R., … Deng, Y. (2019). Lignin-Derived Nitrogen-Doped Porous Carbon as a High-Rate Anode Material for Sodium Ion Batteries. Journal of The Electrochemical Society, 166(2), A423-A428. doi:10.1149/2.1361902jes

Mora-Gómez, J., García-Gabaldón, M., Ortega, E., Sánchez-Rivera, M.-J., Mestre, S., & Pérez-Herranz, V. (2018). Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceramics International, 44(2), 2216-2222. doi:10.1016/j.ceramint.2017.10.178

Montilla, F., Morallón, E., De Battisti, A., & Vázquez, J. L. (2004). Preparation and Characterization of Antimony-Doped Tin Dioxide Electrodes. Part 1. Electrochemical Characterization. The Journal of Physical Chemistry B, 108(16), 5036-5043. doi:10.1021/jp037480b

Daubinger, P., Kieninger, J., Unmüssig, T., & Urban, G. A. (2014). Electrochemical characteristics of nanostructured platinum electrodes – a cyclic voltammetry study. Phys. Chem. Chem. Phys., 16(18), 8392-8399. doi:10.1039/c4cp00342j

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem