- -

Metodología formal de análisis del comportamiento dinámico de sistemas no lineales mediante lógica borrosa

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Metodología formal de análisis del comportamiento dinámico de sistemas no lineales mediante lógica borrosa

Mostrar el registro completo del ítem

Barragán, AJ.; Al-Hadithi, BM.; Andújar, JM.; Jiménez, A. (2015). Metodología formal de análisis del comportamiento dinámico de sistemas no lineales mediante lógica borrosa. Revista Iberoamericana de Automática e Informática industrial. 12(4):434-445. https://doi.org/10.1016/j.riai.2015.09.005

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143675

Ficheros en el ítem

Metadatos del ítem

Título: Metodología formal de análisis del comportamiento dinámico de sistemas no lineales mediante lógica borrosa
Otro titulo: Formal methodology for analyzing the dynamic behavior of nonlinear systems using fuzzy logic
Autor: Barragán, Antonio Javier Al-Hadithi, Basil Mohammed Andújar, José Manuel Jiménez, Agustín
Fecha difusión:
Resumen:
[ES] Tener la capacidad para analizar un sistema desde un punto de vista dinámico puede ser muy útil en muchas circunstancias (sistemas industriales, biológicos, económicos,. ..). El análisis dinámico de un sistema permite ...[+]


[EN] Having the ability to analyze a system from a dynamic point of view can be very useful in many circumstances (industrial systems, biological, economical, . . .). The dynamic analysis of a system allows to understand ...[+]
Palabras clave: Análisis dinámico , Estabilidad , Estado de equilibrio , Linealización , Metodología de Poincaré , Modelado borroso , Sistemas dinámicos , Takagi-Sugeno (TS) model , Dynamic analysis , Dynamic systems , Equilibrium state , Fuzzy control linearization , Fuzzy modeling Poincaré’s , Methodology stability
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2015.09.005
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.1016/j.riai.2015.09.005
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2013-43870-R/ES/DISEÑO, DESARROLLO Y CONSTRUCCION DE PILA DE COMBUSTIBLE MODULAR: INSTRUMENTACION Y CONTROL, MONITORIZACION ONLINE, ESTUDIO DE EFECTOS DE DETERIORO/
info:eu-repo/grantAgreement/Junta de Andalucía//P10-TEP-6124/ES/Sistema Integral para la optimizacion, monitorización y análisis de fallos en paneles, arrays e instalaciones fotovoltáicas/
Agradecimientos:
Este artículo es una contribución del proyecto DPI2013-43870-R financiado por el Ministerio de Economía y Competitividad, y del proyecto TEP-6124 financiado por la Junta de Andalucía. Ambos proyectos están cofinanciados ...[+]
Tipo: Artículo

References

Abraham, R.H., Shaw, C.D., 1997. Dynamics: The Geometry of Behavior. Aerial Press, Incorporated.

Al-Hadithi, B.M., Jiménez, A., Matía, F., Andújar, J.M., Barragán, A.J., Aug. 2014. New concepts for the estimation of Takagi-Sugeno model based on extended Kalman filter. En: Matía, F., Marichal, G.N., Jiménez, E., (Eds.), Fuzzy Modeling and Control: Theory and Applications. Vol. 9 of Atlantis Computational Intelligence Systems. Atlantis Press, pp. 3-24. DOI: 10.2991/978-94-6239-082-9_1.

Al-Hadithi, B. M., Jiménez, A., & Matía, F. (2011). New methods for the estimation of Takagi-Sugeno model based extended Kalman filter and its applications to optimal control for nonlinear systems. Optimal Control Applications and Methods, 33(5), 552-575. doi:10.1002/oca.1014 [+]
Abraham, R.H., Shaw, C.D., 1997. Dynamics: The Geometry of Behavior. Aerial Press, Incorporated.

Al-Hadithi, B.M., Jiménez, A., Matía, F., Andújar, J.M., Barragán, A.J., Aug. 2014. New concepts for the estimation of Takagi-Sugeno model based on extended Kalman filter. En: Matía, F., Marichal, G.N., Jiménez, E., (Eds.), Fuzzy Modeling and Control: Theory and Applications. Vol. 9 of Atlantis Computational Intelligence Systems. Atlantis Press, pp. 3-24. DOI: 10.2991/978-94-6239-082-9_1.

Al-Hadithi, B. M., Jiménez, A., & Matía, F. (2011). New methods for the estimation of Takagi-Sugeno model based extended Kalman filter and its applications to optimal control for nonlinear systems. Optimal Control Applications and Methods, 33(5), 552-575. doi:10.1002/oca.1014

Andujar, J. M., Aroba, J., de Torre, M. L. la, & Grande, J. A. (2005). Contrast of evolution models for agricultural contaminants in ground waters by means of fuzzy logic and data mining. Environmental Geology, 49(3), 458-466. doi:10.1007/s00254-005-0103-2

Andújar, J. M., & Barragán, A. J. (2005). A methodology to design stable nonlinear fuzzy control systems. Fuzzy Sets and Systems, 154(2), 157-181. doi:10.1016/j.fss.2005.03.006

Andújar, J.M., Barragán, A.J., Apr. 2014. Hybridization of fuzzy systems for modeling and control. Revista Iberoamericana de Automática e Informática Industrial {RIAI} 11 (2), 127-141. DOI:http://dx.doi.org/10.1016/j.riai.2014.03.004.

Andújar, J.M., Barragán, A.J., Al-Hadithi, B.M., Matía, F., Jiménez, A., Aug. 2014a. Stable fuzzy control system by design. En: Matía, F., Marichal, G.N., Jiménez, E., (Eds.), Fuzzy Modeling and Control: Theory and Applications. Vol. 9 of Atlantis Computational Intelligence Systems. Atlantis Press, pp. 69-94. DOI: 10.2991/978-94-6239-082-9_4.

Andújar, J.M., Barragán, A.J., Al-Hadithi, B.M., Matía, F., Jiménez, A., Aug. 2014b. Suboptimal recursive methodology for Takagi-Sugeno fuzzy models identification. En: Matía, F., Marichal, G.N., Jiménez, E., (Eds.), Fuzzy Modeling and Control: Theory and Applications. Vol. 9 of Atlantis Computational Intelligence Systems. Atlantis Press, pp. 25-47. DOI: http://dx.doi.org/10.2991/978-94-6239-082-9_2.

Marquez, J. M. A., Pina, A. J. B., & Arias, M. E. G. (2009). A General and Formal Methodology to Design Stable Nonlinear Fuzzy Control Systems. IEEE Transactions on Fuzzy Systems, 17(5), 1081-1091. doi:10.1109/tfuzz.2009.2021984

Andújar, J. M., & Bravo, J. M. (2005). Multivariable fuzzy control applied to the physical–chemical treatment facility of a Cellulose factory. Fuzzy Sets and Systems, 150(3), 475-492. doi:10.1016/j.fss.2004.03.023

Andújar, J. M., Bravo, J. M., & Peregrı́n, A. (2004). Stability analysis and synthesis of multivariable fuzzy systems using interval arithmetic. Fuzzy Sets and Systems, 148(3), 337-353. doi:10.1016/j.fss.2004.01.008

Angelov, P., & Buswell, R. (2002). Identification of evolving fuzzy rule-based models. IEEE Transactions on Fuzzy Systems, 10(5), 667-677. doi:10.1109/tfuzz.2002.803499

Angelov, P. P., & Filev, D. P. (2004). An Approach to Online Identification of Takagi-Sugeno Fuzzy Models. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 34(1), 484-498. doi:10.1109/tsmcb.2003.817053

Aroba, J., Grande, J. A., Andújar, J. M., de la Torre, M. L., & Riquelme, J. C. (2007). Application of fuzzy logic and data mining techniques as tools for qualitative interpretation of acid mine drainage processes. Environmental Geology, 53(1), 135-145. doi:10.1007/s00254-006-0627-0

Babuška, R., Mar. 1995. Fuzzy modeling - a control engineering perspective. En: Proceedings of, FUZZ-IEEE/IFES’95., Vol. 4., Yokohama, Japan, pp. 1897-1902. DOI: 10.1109/FUZZ.Y. 1995.409939.

Babuška, R., Verbruggen, H.B., Mar. 1995. A new identification method for linguistic fuzzy models. En: Proceedings of FUZZ-IEEE/IFES’95. Vol. 4. Yokohama, Japan, pp. 905-912. DOI: 10.1109/FUZZY. 1995.409939.

Barragán, A. J., Al-Hadithi, B. M., Jiménez, A., & Andújar, J. M. (2014). A general methodology for online TS fuzzy modeling by the extended Kalman filter. Applied Soft Computing, 18, 277-289. doi:10.1016/j.asoc.2013.09.005

Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2-3), 191-203. doi:10.1016/0098-3004(84)90020-7

Chua, L.O., Desoer, C.A., Kuh, E.S., 1987. Linear and nonlinear circuits. McGraw-Hill series in electrical and computer engineering: Circuits and systems. McGraw-Hill Book Company, New York.

Denaï, M. A., Palis, F., & Zeghbib, A. (2007). Modeling and control of non-linear systems using soft computing techniques. Applied Soft Computing, 7(3), 728-738. doi:10.1016/j.asoc.2005.12.005

Grande, J. A., Andújar, J. M., Aroba, J., de la Torre, M. L., & Beltrán, R. (2005). Precipitation, pH and metal load in AMD river basins: an application of fuzzy clustering algorithms to the process characterization. J. Environ. Monit., 7(4), 325-334. doi:10.1039/b410795k

Horikawa, S. -i., Furuhashi, T., & Uchikawa, Y. (1992). On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm. IEEE Transactions on Neural Networks, 3(5), 801-806. doi:10.1109/72.159069

Jang, J.-S. R. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685. doi:10.1109/21.256541

Jiménez, A., Aroba, J., de la Torre, M. L., Andujar, J. M., & Grande, J. A. (2009). Model of behaviour of conductivity versus pH in acid mine drainage water, based on fuzzy logic and data mining techniques. Journal of Hydroinformatics, 11(2), 147-153. doi:10.2166/hydro.2009.015

Kosko, B. (1994). Fuzzy systems as universal approximators. IEEE Transactions on Computers, 43(11), 1329-1333. doi:10.1109/12.324566

Kreinovich, V., Nguyen, H. T., & Yam, Y. (2000). Fuzzy systems are universal approximators for a smooth function and its derivatives. International Journal of Intelligent Systems, 15(6), 565-574. doi:10.1002/(sici)1098-111x(200006)15:6<565::aid-int6>3.0.co;2-0

López-Baldán, M. J., García-Cerezo, A., López, J. M. C., & Gallego, A. R. (2002). Fuzzy modeling of a thermal solar plant. International Journal of Intelligent Systems, 17(4), 369-379. doi:10.1002/int.10026

Marquez, H.J., 2003. Nonlinear control systems. Analysis and design. John Wiley & Sons, Inc.

Mencattini, A., Salmeri, M., & Salsano, A. (2005). Sufficient conditions to impose derivative constraints on MISO Takagi-Sugeno Fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 13(4), 454-467. doi:10.1109/tfuzz.2004.841742

Moré, J.J., 1977. The Levenberg-Marquardt algorithm: Implementation and theory. En: Watson, G. (Ed.), Numerical Analysis. Springer Verlag, Berlin, pp. 105-116.

Nguyen, H.T., Sugeno, M., Tong, R.M., Yager, R.R., 1995. Theoretical aspects of fuzzy control. John Wiley Sons, New York, NY, USA.

Nijmeijer, H., Schaft, A. v. d., 1990. Nonlinear dynamical control systems. Springer Verlag, Berlin.

Sastry, S., 1999. Nonlinear system: analysis, stability, and control. Springer, New York.

Slotine, J.-J. E., Li, W., 1991. Applied nonlinear control. Prentice-Hall, NJ.

Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(1), 116-132. doi:10.1109/tsmc.1985.6313399

Wang, L.-X., 1992. Fuzzy systems are universal approximators. En: IEEE International Conference on Fuzzy Systems. San Diego, CA, USA, pp. 1163-1170. DOI: 10.1109/FUZZY. 1992.258721.

Wang, L.X., 1994. Adaptive fuzzy systems and control. Prentice Hall, New Jersey.

Wang, L.-X., 1997. A course in fuzzy systems and control. Prentice Hall, New Yersey, USA.

Wiggins, S., Oct. 2003. Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd Edición. Texts in Applied Mathematics. Springer.

Wong, L., Leung, F., Tam, P., Jul. 1997. Stability design of TS model based fuzzy systems. En: IEEE International Conference on Fuzzy Systems. Vol. 1. Barcelona, Spain, pp. 83-86. DOI: 10.1109/FUZZY. 1997.616349.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem