Abedor, J., Nagpal, K., & Poolla, K. (1996). A linear matrix inequality approach to peak-to-peak gain minimization. International Journal of Robust and Nonlinear Control, 6(9-10), 899-927. doi:10.1002/(sici)1099-1239(199611)6:9/10<899::aid-rnc259>3.0.co;2-g
Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V., 1994. Linear matrix inequalities in system and control theory. No. 15 en SIAM studies in applied mathematics. SIAM.
Chen, C.-W., Yeh, K., Chiang, W.-L., Chen, C.-Y., & Wu, D.-J. (2007). Modeling, H∞ Control and Stability Analysis for Structural Systems Using Takagi-Sugeno Fuzzy Model. Journal of Vibration and Control, 13(11), 1519-1534. doi:10.1177/1077546307073690
[+]
Abedor, J., Nagpal, K., & Poolla, K. (1996). A linear matrix inequality approach to peak-to-peak gain minimization. International Journal of Robust and Nonlinear Control, 6(9-10), 899-927. doi:10.1002/(sici)1099-1239(199611)6:9/10<899::aid-rnc259>3.0.co;2-g
Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V., 1994. Linear matrix inequalities in system and control theory. No. 15 en SIAM studies in applied mathematics. SIAM.
Chen, C.-W., Yeh, K., Chiang, W.-L., Chen, C.-Y., & Wu, D.-J. (2007). Modeling, H∞ Control and Stability Analysis for Structural Systems Using Takagi-Sugeno Fuzzy Model. Journal of Vibration and Control, 13(11), 1519-1534. doi:10.1177/1077546307073690
Feng, G. (2006). A Survey on Analysis and Design of Model-Based Fuzzy Control Systems. IEEE Transactions on Fuzzy Systems, 14(5), 676-697. doi:10.1109/tfuzz.2006.883415
Genesio, R., Tartaglia, M., Vicino, A., ago 1985. On the estimation of asymptotic stability regions: State of the art and new proposals. IEEE Trans. on Aut. Control 30 (8), 747-755.
Goh, K., Turan, L., Safonov, M., Papavassilopoulos, G., Ly, J., June 1994. Biaffine matrix inequality properties and computational methods. En: American Control Conference, 1994. Vol. 1. pp. 850-855 vol.1.
Guerra, T. M., Kruszewski, A., & Lauber, J. (2009). Discrete Tagaki–Sugeno models for control: Where are we? Annual Reviews in Control, 33(1), 37-47. doi:10.1016/j.arcontrol.2009.01.004
Hancock, E.J., Papachristodoulou, A., feb 2013. Generalised absolute stability and sum of squares. Automatica.
Jaadari, A., 2013. Continuous quasi-LPV systems: how to leave the quadratic framework? Tesis doctoral, Université de Valenciennes et du Hainaut-Cambresis (France), Universitat Politècnica de València (Spain). URL: http://hdl.handle.net/10251/31379.
Johansson, M., Rantzer, A., Arzen, K.-E., dec 1999. Piecewise quadratic stability of fuzzy systems. Fuzzy Systems, IEEE Transactions on 7, 713-722.
Kanev, S., Scherer, C., Verhaegen, M., Schutter, B.D., 2004. Robust output-feedback controller design via local {BMI} optimization. Automatica 40 (7), 1115-1127.
Klug, M., Castelan, E. B., & Coutinho, D. (2015). A T–S Fuzzy Approach to the Local Stabilization of Nonlinear Discrete-Time Systems Subject to Energy-Bounded Disturbances. Journal of Control, Automation and Electrical Systems, 26(3), 191-200. doi:10.1007/s40313-015-0172-8
Ksontini, M., Delmotte, F., Guerra, T.-M., Kamoun, A., Oct 2003. Disturbance rejection using takagi-sugeno fuzzy model applied to an interconnected tank system. En: Systems, Man and Cybernetics, 2003. IEEE International Conference on. Vol. 4. pp. 3352-3357 vol. 4.
Xiaodong Liu, & Qingling Zhang. (2003). Approaches to quadratic stability conditions and H//sub∞/ control designs for T-S fuzzy systems. IEEE Transactions on Fuzzy Systems, 11(6), 830-839. doi:10.1109/tfuzz.2003.819834
Matía, F., Marichal, G.N., Jiménez, E. (Eds.), 2014. Fuzzy Modeling and Control: Theory and Applications. Vol. 9 of Atlantis Computational Intelligence Systems. Atlantis Press.
Palhares, R. M., & Peres, P. L. D. (2000). Robust filtering with guaranteed energy-to-peak performance — an LMI approach. Automatica, 36(6), 851-858. doi:10.1016/s0005-1098(99)00211-3
Pitarch, J.L., Sala, A., Ariño, C.V., Apr 2014. Closed-form estimates of the domain of attraction for nonlinear systems via fuzzy-polynomial models. Cybernetics, IEEE Transactions on 44 (4), 526-538.
Pitarch, J. L., Sala, A., Ariño, C. V., & Bedate, F. (2012). Estimaación del dominio de atracción de sistemas no lineales mediante modelos borrosos polinomiales. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(2), 152-161. doi:10.1016/j.riai.2012.02.007
Pitarch, J.L., Sala, A., Bedate, F., Ariño, C.V., Sep 2013. Inescapable-set estimation for nonlinear systems with non-vanishing disturbances. En: 3rd IFAC Inter. Conf. on Intelligent Control and Automation Science (ICONS). Chengdu, China, pp. 457-462.
Sala, A. (2009). On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems. Annual Reviews in Control, 33(1), 48-58. doi:10.1016/j.arcontrol.2009.02.001
Salcedo, J. V., Martínez, M., & García-Nieto, S. (2008). Stabilization conditions of fuzzy systems under persistent perturbations and their application in nonlinear systems. Engineering Applications of Artificial Intelligence, 21(8), 1264-1276. doi:10.1016/j.engappai.2008.04.012
Scherer, C., Weiland, S., 2004. Linear matrix inequalities in control. Notes for a course of the Dutch Institute of Systems and Control. URL: http://www.cs.ele.tue.nl/SWeiland/lmid.pdf.
Tadeo, F., & Grimble, M. J. (2002). Advanced control of a hydrogen reformer. Computing & Control Engineering Journal, 13(6), 305-314. doi:10.1049/cce:20020609
Tanaka, K., Wang, H.O., 2001. Fuzzy control systems design and analysis: a linear matrix inequality approach, 2a Edición. Wiley-Interscience publication. John Wiley and Sons.
Wang, H., Tanaka, K., Griffin, M., feb 1996. An approach to fuzzy control of nonlinear systems: stability and design issues. Fuzzy Systems, IEEE Transactions on 4, 14-23.
Wang, L., & Liu, X. (2013). Local analysis of continuous-time Takagi–Sugeno fuzzy system with disturbances bounded by magnitude or energy: A Lagrange multiplier method. Information Sciences, 248, 89-102. doi:10.1016/j.ins.2013.06.023
[-]