Mostrar el registro sencillo del ítem
dc.contributor.author | Landeira Freire, Martín A. | es_ES |
dc.contributor.author | Sánchez, Emilio | es_ES |
dc.contributor.author | Tejada, Sonia | es_ES |
dc.contributor.author | Díez, Ricardo | es_ES |
dc.date.accessioned | 2020-05-20T07:48:09Z | |
dc.date.available | 2020-05-20T07:48:09Z | |
dc.date.issued | 2015-01-11 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/143822 | |
dc.description.abstract | [ES] En este trabajo se presenta un nuevo prototipo de plataforma robótica cooperativa, destinada a la asistencia en intervenciones quirúrgicas de fijación transpedicular lumbar. El uso de sistemas robóticos de asistencia durante la ejecución de procedimientos quirúrgicos convencionales contribuye a la mejora en los resultados de las intervenciones al permitir elevados niveles de precisión y seguridad. Por ello, resulta crucial garantizar la robustez y destreza de los dispositivos empleados, incluso en las proximidades de configuraciones que pudieran introducir inestabilidades en su funcionamiento. Partiendo de esta idea, se ha implementado una estrategia de gestión de singularidades en la plataforma robótica, basada en el uso de un algoritmo de mínimos cuadrados amortiguados con factor de amortiguamiento adaptativo, unido a un método para la optimización de la configuración articular del manipulador redundante empleado, Mitsubishi PA10–7C. | es_ES |
dc.description.abstract | [EN] In this research work, a new prototype of collaborative robot- assisted surgical platform for transpedicular fixation surgeries is presented. The usage of assistive robotic systems during conventional surgical procedures improves surgical outcomes, as they ensure high levels of precision and safety. Hence, robustness and dexterity of the mechatronic devices must be guaranteed, even in the neighborhood of unstable configurations during their performance. Bearing this in mind, a singularity management strategy has been implemented in the robotic platform, based on the Damped Least Squares method using an adaptive damping factor together with a methodology for optimization of joint redundancy of the platform manipulator, Mitsubishi PA10-7C. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Singularities | es_ES |
dc.subject | Inverse kinematics problem | es_ES |
dc.subject | Redundant manipulator | es_ES |
dc.subject | Co-operative control | es_ES |
dc.subject | Biomedical system | es_ES |
dc.title | Desarrollo e implementación de una estrategia de gestión de singularidades para un sistema robótico redundante cooperativo destinado a la asistencia en intervenciones quirúrgicas | es_ES |
dc.title.alternative | Development and implementation of a singularity management strategy for a cooperative redundant robotic system destined to assistance during surgical interventions. | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.riai.2014.05.007 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Landeira Freire, MA.; Sánchez, E.; Tejada, S.; Díez, R. (2015). Desarrollo e implementación de una estrategia de gestión de singularidades para un sistema robótico redundante cooperativo destinado a la asistencia en intervenciones quirúrgicas. Revista Iberoamericana de Automática e Informática industrial. 12(1):80-91. https://doi.org/10.1016/j.riai.2014.05.007 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.riai.2014.05.007 | es_ES |
dc.description.upvformatpinicio | 80 | es_ES |
dc.description.upvformatpfin | 91 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\9412 | es_ES |
dc.description.references | Buss, S. R., & Kim, J.-S. (2005). Selectively Damped Least Squares for Inverse Kinematics. Journal of Graphics Tools, 10(3), 37-49. doi:10.1080/2151237x.2005.10129202 | es_ES |
dc.description.references | Chiaverini, S., Oriolo, G., Walker, I.D., 2008. Kinematically redundant manipulators. In: Siciliano, B., Khatib, O. (Eds.). Handbook of Robotics. Springer-Verlag, Berlin Heidelberg, Ch. 11, pp. 245-268. | es_ES |
dc.description.references | Chiaverini, S. (1997). Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Transactions on Robotics and Automation, 13(3), 398-410. doi:10.1109/70.585902 | es_ES |
dc.description.references | Cho, W., Shimer, A. L., & Shen, F. H. (2011). Complications Associated with Posterior Lumbar Surgery. Seminars in Spine Surgery, 23(2), 101-113. doi:10.1053/j.semss.2010.12.013 | es_ES |
dc.description.references | Cinquin, P. (2011). How today’s robots work and perspectives for the future. Journal of Visceral Surgery, 148(5), e12-e18. doi:10.1016/j.jviscsurg.2011.08.003 | es_ES |
dc.description.references | Faraj, A. A., & Webb, J. K. (1997). Early complications of spinal pedicle screw. European Spine Journal, 6(5), 324-326. doi:10.1007/bf01142678 | es_ES |
dc.description.references | Flaquer, J., Olaizola, J., Olaizola, J., 2004. Curso de álgebra lineal. Eunsa – Ediciones Universidad de Navarra. Pamplona. España. | es_ES |
dc.description.references | Galvani, C., & Horgan, S. (2005). Robots en cirugía general: presente y futuro. Cirugía Española, 78(3), 138-147. doi:10.1016/s0009-739x(05)70907-6 | es_ES |
dc.description.references | Gomes, P. (2011). Surgical robotics: Reviewing the past, analysing the present, imagining the future. Robotics and Computer-Integrated Manufacturing, 27(2), 261-266. doi:10.1016/j.rcim.2010.06.009 | es_ES |
dc.description.references | Khatib, O. (1986). Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The International Journal of Robotics Research, 5(1), 90-98. doi:10.1177/027836498600500106 | es_ES |
dc.description.references | Kragic, D., Marayong, P., Li, M., Okamura, A. M., & Hager, G. D. (2005). Human-Machine Collaborative Systems for Microsurgical Applications. The International Journal of Robotics Research, 24(9), 731-741. doi:10.1177/0278364905057059 | es_ES |
dc.description.references | Landeira Freire, M.A., Ramos, J.C., Sánchez, E., 2013. Robot-assisted surgical platform for controlled bone drilling: experiments on temperature monitoring for assessment of thermal bone necrosis. In: XIII Mediterranean Conference on Medical and Biological Engineering and Computing. Sevilla, España. 2013. | es_ES |
dc.description.references | Lanfranco, A. R., Castellanos, A. E., Desai, J. P., & Meyers, W. C. (2004). Robotic Surgery. Annals of Surgery, 239(1), 14-21. doi:10.1097/01.sla.0000103020.19595.7d | es_ES |
dc.description.references | Lee, J., Hwang, I., Kim, K., Choi, S., Kyun Chung, W., & Soo Kim, Y. (2009). Cooperative robotic assistant with drill‐by‐wire end‐effector for spinal fusion surgery. Industrial Robot: An International Journal, 36(1), 60-72. doi:10.1108/01439910910924684 | es_ES |
dc.description.references | Liverneaux, P., Nectoux, E., & Taleb, C. (2009). The future of robotics in hand surgery. Chirurgie de la Main, 28(5), 278-285. doi:10.1016/j.main.2009.08.002 | es_ES |
dc.description.references | Maciejewski, A. A., & Klein, C. A. (1988). Numerical filtering for the operation of robotic manipulators through kinematically singular configurations. Journal of Robotic Systems, 5(6), 527-552. doi:10.1002/rob.4620050603 | es_ES |
dc.description.references | McBeth, P.B., Louw, D.F., Rizun, P.R., Sutherland, G.R., 2004. Robotics in neurosurgery. The American Journal of Surgery 188 (Suppl. to October 2004), pp. 68S–75S. DOI: 10.1016/j.amjsurg.2004.08.004. | es_ES |
dc.description.references | Nakai, K., Kosuge, K., Hirata, Y., 2002. Control of robot in singular configurations for human-robot coordination. In: IEEE Int. Workshop on Robot and Human Interactive Comunication. Berlin, Alemania. 2002; pp. 356-361. | es_ES |
dc.description.references | Nakamura, Y., & Hanafusa, H. (1986). Inverse Kinematic Solutions With Singularity Robustness for Robot Manipulator Control. Journal of Dynamic Systems, Measurement, and Control, 108(3), 163-171. doi:10.1115/1.3143764 | es_ES |
dc.description.references | Ortmaeir, T., Weiss, H., Hagn, U., Grebenstein, M., Nickl, M., Albu-Schäffer, A., Otto, C., Jörg, S., Konietschke, R., Le-Tien, L., Hirzinger, G., 2006 (a). A hands-on-robot for accurate placement of pedicle screws. Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, pp. 4179-4186. DOI: 10.1109/ROBOT.2006.1642345. | es_ES |
dc.description.references | Ortmaeir, T., Weiss, H., Döbele, S., Schreiber, U., 2006 (b). Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement. The International Journal of Medical Robotics and Computer Assisted Surgery 2, pp. 350-363. DOI: 10.1002/rcs.114. | es_ES |
dc.description.references | Peshkin, M. A., Colgate, J. E., Wannasuphoprasit, W., Moore, C. A., Gillespie, R. B., & Akella, P. (2001). Cobot architecture. IEEE Transactions on Robotics and Automation, 17(4), 377-390. doi:10.1109/70.954751 | es_ES |
dc.description.references | Rabinowitz, R. S., & Currier, B. L. (1997). Transpedicular screw fixation of the lumbar spine: review and technique. Operative Techniques in Orthopaedics, 7(1), 71-78. doi:10.1016/s1048-6666(97)80025-0 | es_ES |
dc.description.references | Rubí, J., Rubio, A., Avello, A., 2002. Involving the operator in a singularity avoidance strategy for a redundant slave manipulator in a teleoperated application. In: IEEE International Conference on Intelligent Robots and Systems. Lausanna, Suiza. 2002. DOI: 10.1109/IRDS.2002.1041724. | es_ES |
dc.description.references | Shoham, M., Burman, M., Zehavi, E., Joskowicz, L., Batkilin, E., & Kunicher, Y. (2003). Bone-mounted miniature robot for surgical procedures: concept and clinical applications. IEEE Transactions on Robotics and Automation, 19(5), 893-901. doi:10.1109/tra.2003.817075 | es_ES |
dc.description.references | Sciavicco, L., Siciliano, B., 2001. Modelling and control of robot manipulators. Springer-Verlag. Londres. Reino Unido. | es_ES |
dc.description.references | Siciliano, B. (1990). Kinematic control of redundant robot manipulators: A tutorial. Journal of Intelligent and Robotic Systems, 3(3), 201-212. doi:10.1007/bf00126069 | es_ES |
dc.description.references | Tovar-Arriaga, S., Tita, R., Pedraza-Ortega, J. C., Gorrostieta, E., & Kalender, W. A. (2011). Development of a robotic FD-CT-guided navigation system for needle placement-preliminary accuracy tests. The International Journal of Medical Robotics and Computer Assisted Surgery, 7(2), 225-236. doi:10.1002/rcs.393 | es_ES |
dc.description.references | Wampler, C. W., & Leifer, L. J. (1988). Applications of Damped Least-Squares Methods to Resolved-Rate and Resolved-Acceleration Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control, 110(1), 31-38. doi:10.1115/1.3152644 | es_ES |
dc.description.references | Wang, J., Li, Y., & Zhao, X. (2010). Inverse Kinematics and Control of a 7-DOF Redundant Manipulator Based on the Closed-Loop Algorithm. International Journal of Advanced Robotic Systems, 7(4), 37. doi:10.5772/10495 | es_ES |
dc.description.references | Yoshikawa, T., 1984. Analysis and control of robot manipulators with redundancy. En: Robotics Research the First International Symposium: MIT Press, Ch 8, pp. 735-747. | es_ES |