Baluja S., Davies S., 1997. Combining multiple optimization runs with optimal dependency trees. Technical Report CMU-CS-97-157, Carnegie Mellon University.
Bean J., Norman B., 1993. Random keys for job shop scheduling problem. Technical Report TR 93-7, The University of Michigan.
Chen S.H., Chen M.C., Chang P.C., Zhang Q., Chen Y.M., 2010a. Guidelines for developing effective Estimation of Distribution Algorithms in solving single machine scheduling problems. Expert Systems with Applications 37, 6441-6451.
[+]
Baluja S., Davies S., 1997. Combining multiple optimization runs with optimal dependency trees. Technical Report CMU-CS-97-157, Carnegie Mellon University.
Bean J., Norman B., 1993. Random keys for job shop scheduling problem. Technical Report TR 93-7, The University of Michigan.
Chen S.H., Chen M.C., Chang P.C., Zhang Q., Chen Y.M., 2010a. Guidelines for developing effective Estimation of Distribution Algorithms in solving single machine scheduling problems. Expert Systems with Applications 37, 6441-6451.
Chen S.H., Chang P.C., Cheng T., Zhang Q., 2012b. A Self-guided Genetic Algorithm for permutation flowshop scheduling problems. Computers and Operations Research 39, 1450-1457.
Chen Y.M., Chen M.C., Chang P.C., Chen S.H., 2012c. Extended artificial chromosomes genetic algorithm for permutation flowshop scheduling problems. Computers and Industrial Engineering 62, 536-545.
De Bonet J., Isbell C., Viola P., 1997. MIMIC: Finding Optima by Estimation Probability Densities. Advances in Neural Information Processing Systems 9.
Greenwood A., Vanguri S., Eksioglu B., Jain P., Hill T., Miller J., Walden C., 2005. Simulation Optimization Decision Support System for Ship Panel Shop Operations. En Kuhl M.E., Steiger N.M., Armstrong F., Joines J. (Eds.), Proceedings of the 2005 Winter Simulation Conference, pp. 2078-2086.
Jarboui V., Eddaly M., Siarry P., 2009. An Estimation of Distribution Algorithm for minimizing the total flow time in permutation flowshop scheduling problems. Computers and Operations Research 36, 2638-2646.
Larrañaga P., Exteberria R., Lozano J., Peña J., 2000. Optimization in continuous domains by learning and simulation of Gaussian networks. En Wu A. (Ed.), Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program, pp. 201-204.
Liu H., Gao L., Pan Q., 2011. A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem. Experts Systems with Applications 38, 4348-4360.
Mühlenbein H., Paaß G., 1996. From recombination of genes to the estimation of distributions: I. binary parameters. En Voigt H., Ebeling W., Rechenberg I., Schwefel H. (Eds.), Parallel Problem Solving from Nature PPSN IV, Springer, Berlin, pp. 178-187.
Pan Q.K., Ruiz R., 2012. An estimation of distribution algorithm for lot- streaming flow shop problems with setup times. Omega 40, 166-180.
Peña J., Peña-Robles V., Larrañaga P., Herves V., Rosales F., Pérez M., 2004. Ga-eda: hybrid evolutionary algorithm using genetic and estimation of distribution algorithms. En Orchard B., Yang C., Ali M. (Eds.), Innovations in applied artificial intelligence 3029, Lecture notes in computer science, Berlin/Heidelberg, pp. 361-371.
Rudolph G., 1991. Global optimization by means of distributed evolution strategies. En Schwefel H., Manner R. (Eds.), Parallel Problem Solving from Nature PPSN I, Lectures Notes in Computer Science. 496, Springer- Verlag, pp. 209-213.
Shim V.A., Chen Tan K., Yong Chia J., Kiat Chong J., 2011. Evolutionary algorithms for solving multi-objective travelling salesman problem. Flexible Service and Manufacturing Journal 23, 207-241.
Wang L., Wang S., Xu Y., Zhou G., Liu M., 2012. A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem. Computers and Industrial Engineering 62, 917-926.
Zhang Y., Li X., 2011. Estimation of distribution algorithm for permutation flow shops with total flowtime minimization. Computers and Industrial Engineering 60, 706-718.
[-]