- -

Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y Perspectivas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y Perspectivas

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Reynoso Meza, Gilberto es_ES
dc.contributor.author Sanchís Saez, Javier es_ES
dc.contributor.author Blasco Ferragud, Francesc Xavier es_ES
dc.contributor.author Martínez Iranzo, Miguel Andrés es_ES
dc.date.accessioned 2020-05-21T09:19:15Z
dc.date.available 2020-05-21T09:19:15Z
dc.date.issued 2013-07-09
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143934
dc.description.abstract [ES] Los controladores PID continúan siendo una solución fiable, robusta, práctica y sencilla para el control de procesos. Actualmente constituyen la primera capa de control de la gran mayoría de las aplicaciones industriales. De ahí que un número importante de trabajos de investigación se han orientado a mejorar su rendimiento y prestaciones. Las líneas de investigación en este campo van desde nuevos métodos de ajuste, pasando por nuevos tipos de estructura hasta metodologías de diseño integrales. Particularizando en el ajuste de parámetros, una de las formas de obtener una solución novedosa consiste en plantear un problema de optimización, el cual puede llegar a ser no-lineal, no-convexo y con restricciones. Dado que los algoritmos evolutivos han mostrado un buen desempeño para solucionar problemas complejos de optimización, han sido utilizados en diversas propuestas relacionadas con el ajuste de controladores PID. Este trabajo muestra un revisión de estas propuestas y las prestaciones obtenidas en cada caso. Así mismo, se identifican algunas tendencias y posibles líneas de trabajo futuras. es_ES
dc.description.abstract [EN] PID controllers are a reliable, robust, practical and easy to implement control solution for industrial processes. They provide the first control layer for a vast majority of industrial applications. Owing to this, several researches invest time and resources to improve their performance. The research lines in this field scope with new tuning methods, new types of structures and integral design methods. For tuning methods, improvements could be fulfilled stating an optimization problem, which could be non-linear, non-convex and highly constrained. In such instances, evolutionary algorithms have shown a good performance and have been used in various proposals related with PID controllers tuning. This work shows a review of these proposals and the benefits obtained in each case. Some trends and possible future research lines are also identified. es_ES
dc.description.sponsorship Este trabajo ha sido realizado parcialmente gracias al apoyo del Ministerio de Economía y Competitividad (Gobierno de España) mediante los proyectos TIN2011 - 28082, ENE2011- 25900; la Generalitat Valenciana mediante la iniciativa GV/2012/ 073 y la Universitat Politècnica de València a travès de la beca FPI-2010/19 y la iniciativa de investigacion PAID-06-11.
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Controlador PID es_ES
dc.subject PID convencional es_ES
dc.subject PID borroso es_ES
dc.subject PID fraccionario es_ES
dc.subject Algoritmos Evolutivos es_ES
dc.subject Optimización es_ES
dc.subject PID controller es_ES
dc.subject Conventional PID es_ES
dc.subject Fuzzy PID es_ES
dc.subject Fractional order PID es_ES
dc.subject Evolutionary algorithms es_ES
dc.subject Optimization es_ES
dc.title Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y Perspectivas es_ES
dc.title.alternative Evolutionary Algorithms for PID controller tuning: Current Trends and Perspectives es_ES
dc.type Artículo es_ES
dc.type Otros es_ES
dc.identifier.doi 10.1016/j.riai.2013.04.001
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2011-28082/ES/DISEÑO E IMPLEMENTACION DE PILOTOS AUTOMATICOS PARA VEHICULOS AEREOS NO TRIPULADOS (UAVS) MEDIANTE TECNICAS DE OPTIMIZACION Y CONTROL AVANZADO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//ENE2011-25900/ES/GESTION OPTIMA MEDIANTE CONTROLADORES AVANZADOS DE PILAS DE COMBUSTIBLE TIPO PEM PARA APLICACIONES MOVILES Y ESTATICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2012%2F073/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI%2F2010%2F19/
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-11/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Reynoso Meza, G.; Sanchís Saez, J.; Blasco Ferragud, FX.; Martínez Iranzo, MA. (2013). Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y Perspectivas. Revista Iberoamericana de Automática e Informática industrial. 10(3):251-268. https://doi.org/10.1016/j.riai.2013.04.001 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2013.04.001 es_ES
dc.description.upvformatpinicio 251 es_ES
dc.description.upvformatpfin 268 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9510 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Algoul, S., Alam, M. S., Hossain, M. A., & Majumder, M. A. A. (2010). Multi-objective optimal chemotherapy control model for cancer treatment. Medical & Biological Engineering & Computing, 49(1), 51-65. doi:10.1007/s11517-010-0678-y es_ES
dc.description.references Kiam Heong Ang, Chong, G., & Yun Li. (2005). PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology, 13(4), 559-576. doi:10.1109/tcst.2005.847331 es_ES
dc.description.references Åström, K. J., & Hägglund, T. (2001). The future of PID control. Control Engineering Practice, 9(11), 1163-1175. doi:10.1016/s0967-0661(01)00062-4 es_ES
dc.description.references Åström, K.J., Hägglund, T., 2005. Advanced PID Control. ISA - The Instrumentation, Systems, and Automation Society, Research Triangle Park, NC 27709. es_ES
dc.description.references ÅSTRÖM, K. J., PANAGOPOULOS, H., & HÄGGLUND, T. (1998). Design of PI Controllers based on Non-Convex Optimization. Automatica, 34(5), 585-601. doi:10.1016/s0005-1098(98)00011-9 es_ES
dc.description.references Avigad, G., Moshaiov, A., Brauner, N., (2003). june Towards a general tool for mechatronic design. In: Control Applications, 2003. CCA 2003. Proceedings of 2003 IEEE Conference on. Vol. 2. pp. 1035-1040 vol.2. es_ES
dc.description.references Hultmann Ayala, H. V., & dos Santos Coelho, L. (2012). Tuning of PID controller based on a multiobjective genetic algorithm applied to a robotic manipulator. Expert Systems with Applications, 39(10), 8968-8974. doi:10.1016/j.eswa.2012.02.027 es_ES
dc.description.references Behbahani, S., & de Silva, C. W. (2008). System-Based and Concurrent Design of a Smart Mechatronic System Using the Concept of Mechatronic Design Quotient (MDQ). IEEE/ASME Transactions on Mechatronics, 13(1), 14-21. doi:10.1109/tmech.2007.915058 es_ES
dc.description.references Beyer, H.-G., & Sendhoff, B. (2007). Robust optimization – A comprehensive survey. Computer Methods in Applied Mechanics and Engineering, 196(33-34), 3190-3218. doi:10.1016/j.cma.2007.03.003 es_ES
dc.description.references Bingül, Z., & Karahan, O. (2011). A Fuzzy Logic Controller tuned with PSO for 2 DOF robot trajectory control. Expert Systems with Applications, 38(1), 1017-1031. doi:10.1016/j.eswa.2010.07.131 es_ES
dc.description.references Biswas, A., Das, S., Abraham, A., & Dasgupta, S. (2009). Design of fractional-order PIλDμ controllers with an improved differential evolution. Engineering Applications of Artificial Intelligence, 22(2), 343-350. doi:10.1016/j.engappai.2008.06.003 es_ES
dc.description.references Blasco, X., Herrero, J. M., Sanchis, J., & Martínez, M. (2008). A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences, 178(20), 3908-3924. doi:10.1016/j.ins.2008.06.010 es_ES
dc.description.references Bonissone, P., Subbu, R., & Lizzi, J. (2009). Multicriteria decision making (mcdm): a framework for research and applications. IEEE Computational Intelligence Magazine, 4(3), 48-61. doi:10.1109/mci.2009.933093 es_ES
dc.description.references Caballero, J. A., & Grossmann, I. E. (2007). Una revisión del estado del arte en optimización. Revista Iberoamericana de Automática e Informática Industrial RIAI, 4(1), 5-23. doi:10.1016/s1697-7912(07)70188-7 es_ES
dc.description.references Coello, C., 2000. Handling preferences in evolutionary multiobjective optimization: a survey. In: Evolutionary Computation, 2000. Proceedings of the 2000 Congress on. Vol. 1. pp. 30-37 vol.1. es_ES
dc.description.references Coello Coello, C. A. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 191(11-12), 1245-1287. doi:10.1016/s0045-7825(01)00323-1 es_ES
dc.description.references Coello Coello, C. A. (2006). Evolutionary multi-objective optimization: a historical view of the field. IEEE Computational Intelligence Magazine, 1(1), 28-36. doi:10.1109/mci.2006.1597059 es_ES
dc.description.references Coello, C., 2011. An introduction to multi-objective particle swarm optimizers. In: Gaspar-Cunha, A., Takahashi, R., Schaefer, G., Costa, L. (Eds.), Soft Computing in Industrial Applications. Vol. 96 of Advances in Intelligent and Soft Computing. Springer Berlin /Heidelberg, pp. 3-12, 10,1007/978 − 3 − 642 − 20505 − 71. es_ES
dc.description.references Cordón, O. (2011). A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems. International Journal of Approximate Reasoning, 52(6), 894-913. doi:10.1016/j.ijar.2011.03.004 es_ES
dc.description.references Corne, D.W., Knowles, J.D., 2007. Techniques for highly multiobjective optimisation: some nondominated points are better than others. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation. GECCO ‘07. ACM, New York, NY, USA, pp. 773-780. es_ES
dc.description.references Cruz, C., González, J. R., & Pelta, D. A. (2010). Optimization in dynamic environments: a survey on problems, methods and measures. Soft Computing, 15(7), 1427-1448. doi:10.1007/s00500-010-0681-0 es_ES
dc.description.references Das, S., Maity, S., Qu, B.-Y., & Suganthan, P. N. (2011). Real-parameter evolutionary multimodal optimization — A survey of the state-of-the-art. Swarm and Evolutionary Computation, 1(2), 71-88. doi:10.1016/j.swevo.2011.05.005 es_ES
dc.description.references Das, R. T., Ang, K. K., & Quek, C. (2010). A synergy of econometrics and computational methods (GARCH-RNFS) for volatility forecasting. IEEE Congress on Evolutionary Computation. doi:10.1109/cec.2010.5586324 es_ES
dc.description.references Das, S., Suganthan, P., 2011. Problem definitions and evaluation criteria for cec 2011 competition on testing evolutionary algorithms on real world optimization problems. Tech. rep., Jadavpur university and Nanyang Technological University. es_ES
dc.description.references Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2-4), 311-338. doi:10.1016/s0045-7825(99)00389-8 es_ES
dc.description.references Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017 es_ES
dc.description.references Dixon, R., & Pike, A. W. (2006). Alstom Benchmark Challenge II on Gasifier Control. IEE Proceedings - Control Theory and Applications, 153(3), 254-261. doi:10.1049/ip-cta:20050062 es_ES
dc.description.references Eiben, A. E., & Schippers, C. A. (1998). On Evolutionary Exploration and Exploitation. Fundamenta Informaticae, 35(1-4), 35-50. doi:10.3233/fi-1998-35123403 es_ES
dc.description.references Elgammal, A. A. A., & Sharaf, A. M. (2012). Self-regulating particle swarm optimised controller for (photovoltaic–fuel cell) battery charging of hybrid electric vehicles. IET Electrical Systems in Transportation, 2(2), 77. doi:10.1049/iet-est.2011.0021 es_ES
dc.description.references Fazendeiro, P., de Oliveira, J. V., & Pedrycz, W. (2007). A Multiobjective Design of a Patient and Anaesthetist-Friendly Neuromuscular Blockade Controller. IEEE Transactions on Biomedical Engineering, 54(9), 1667-1678. doi:10.1109/tbme.2007.895109 es_ES
dc.description.references Fazzolari, M., Alcala, R., Nojima, Y., Ishibuchi, H., & Herrera, F. (2013). A Review of the Application of Multiobjective Evolutionary Fuzzy Systems: Current Status and Further Directions. IEEE Transactions on Fuzzy Systems, 21(1), 45-65. doi:10.1109/tfuzz.2012.2201338 es_ES
dc.description.references Figueira, J., Greco, S., Ehrgott, M., 2005. Multiple criteria decision analysis: State of the art surveys. Springer international series. es_ES
dc.description.references Fleming, P. ., & Purshouse, R. . (2002). Evolutionary algorithms in control systems engineering: a survey. Control Engineering Practice, 10(11), 1223-1241. doi:10.1016/s0967-0661(02)00081-3 es_ES
dc.description.references Fonseca, C. M., & Fleming, P. J. (1998). Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 28(1), 26-37. doi:10.1109/3468.650319 es_ES
dc.description.references Gaing, Z.-L. (2004). A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System. IEEE Transactions on Energy Conversion, 19(2), 384-391. doi:10.1109/tec.2003.821821 es_ES
dc.description.references Goldberg, D., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA. es_ES
dc.description.references Hajiloo, A., Nariman-zadeh, N., & Moeini, A. (2012). Pareto optimal robust design of fractional-order PID controllers for systems with probabilistic uncertainties. Mechatronics, 22(6), 788-801. doi:10.1016/j.mechatronics.2012.04.003 es_ES
dc.description.references Herreros, A., Baeyens, E., & Perán, J. R. (2002). Design of PID-type controllers using multiobjective genetic algorithms. ISA Transactions, 41(4), 457-472. doi:10.1016/s0019-0578(07)60102-5 es_ES
dc.description.references HUANG, L., WANG, N., & ZHAO, J.-H. (2008). Multiobjective Optimization for Controller Design. Acta Automatica Sinica, 34(4), 472-477. doi:10.3724/sp.j.1004.2008.00472 es_ES
dc.description.references Inselberg, A. (1985). The plane with parallel coordinates. The Visual Computer, 1(2), 69-91. doi:10.1007/bf01898350 es_ES
dc.description.references Iruthayarajan, M. W., & Baskar, S. (2009). Evolutionary algorithms based design of multivariable PID controller. Expert Systems with Applications, 36(5), 9159-9167. doi:10.1016/j.eswa.2008.12.033 es_ES
dc.description.references Kamath, S., George, V. I., & Vidyasagar, S. (2009). A comparative study of different types of controllers used for blood glucose regulation system. The Canadian Journal of Chemical Engineering, 87(5), 812-817. doi:10.1002/cjce.20219 es_ES
dc.description.references Kaveh, P., & Shtessel, Y. B. (2008). Blood glucose regulation using higher-order sliding mode control. International Journal of Robust and Nonlinear Control, 18(4-5), 557-569. doi:10.1002/rnc.1223 es_ES
dc.description.references Kollat, J. B., & Reed, P. (2007). A framework for Visually Interactive Decision-making and Design using Evolutionary Multi-objective Optimization (VIDEO). Environmental Modelling & Software, 22(12), 1691-1704. doi:10.1016/j.envsoft.2007.02.001 es_ES
dc.description.references Konak, A., Coit, D.W., Smith, A.E., 2006. Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety 91 (9), 992-1007, special Issue - Genetic Algorithms and Reliability. es_ES
dc.description.references Koza, J. R., Keane, M. A., & Streeter, M. J. (2003). What’s AI done for me lately? Genetic programming’s human-competitive results. IEEE Intelligent Systems, 18(3), 25-31. doi:10.1109/mis.2003.1200724 es_ES
dc.description.references Koza, J., Poli, R., 2005. Genetic programming. In: Burke, E.K., Kendall, G. (Eds.), Search Methodologies. Springer US, pp. 127-164, 10.1007/0-387-28356-0 5. es_ES
dc.description.references Lamanna, R., Vega, P., Revollar, S., & Alvarez, H. (2009). Diseño Simultáneo de Proceso y Control de una Torre Sulfitadora de Jugo de Caña de Azúcar. Revista Iberoamericana de Automática e Informática Industrial RIAI, 6(3), 32-43. doi:10.1016/s1697-7912(09)70262-6 es_ES
dc.description.references Lee, C.-H., & Chang, F.-K. (2010). Fractional-order PID controller optimization via improved electromagnetism-like algorithm. Expert Systems with Applications, 37(12), 8871-8878. doi:10.1016/j.eswa.2010.06.009 es_ES
dc.description.references PID control system analysis and design. (2006). IEEE Control Systems, 26(1), 32-41. doi:10.1109/mcs.2006.1580152 es_ES
dc.description.references Lin, C.-M., Li, M.-C., Ting, A.-B., & Lin, M.-H. (2011). A robust self-learning PID control system design for nonlinear systems using a particle swarm optimization algorithm. International Journal of Machine Learning and Cybernetics, 2(4), 225-234. doi:10.1007/s13042-011-0021-4 es_ES
dc.description.references Lotov, A., Miettinen, K., 2008. Visualizing the Pareto frontier. In: Branke, J., Deb, K., Miettinen, K., Slowinski, R. (Eds.), Multiobjective Optimization. Vol. 5252 of Lecture Notes in Computer Science. Springer Berlin /Heidelberg, pp. 213-243. es_ES
dc.description.references Luyben, W. L. (1986). Simple method for tuning SISO controllers in multivariable systems. Industrial & Engineering Chemistry Process Design and Development, 25(3), 654-660. doi:10.1021/i200034a010 es_ES
dc.description.references Mallipeddi, R., Suganthan, P., 2009. Problem definitions and evaluation criteria for the CEC 2010 competition on constrained real-parameter optimization. Tech. rep., Nanyang Technological University, Singapore. es_ES
dc.description.references Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26(6), 369-395. doi:10.1007/s00158-003-0368-6 es_ES
dc.description.references Mattson, C.A., Messac, A., 2005 Pareto frontier based concept selection under uncertainty, with visualization. Optimization and Engineering 6, 85-115, 10.1023/B:OPTE. 0000048538.35456.45. es_ES
dc.description.references Menhas, M. I., Fei, M., Wang, L., & Qian, L. (2012). Real/binary co-operative and co-evolving swarms based multivariable PID controller design of ball mill pulverizing system. Energy Conversion and Management, 54(1), 67-80. doi:10.1016/j.enconman.2011.10.001 es_ES
dc.description.references Menhas, M. I., Wang, L., Fei, M., & Pan, H. (2012). Comparative performance analysis of various binary coded PSO algorithms in multivariable PID controller design. Expert Systems with Applications, 39(4), 4390-4401. doi:10.1016/j.eswa.2011.09.152 es_ES
dc.description.references Messac, A. (1996). Physical programming - Effective optimization for computational design. AIAA Journal, 34(1), 149-158. doi:10.2514/3.13035 es_ES
dc.description.references Mezura-Montes, E., & Coello Coello, C. A. (2011). Constraint-handling in nature-inspired numerical optimization: Past, present and future. Swarm and Evolutionary Computation, 1(4), 173-194. doi:10.1016/j.swevo.2011.10.001 es_ES
dc.description.references Mezura-Montes, E., Reyes-Sierra, M., & Coello, C. A. C. (2008). Multi-objective Optimization Using Differential Evolution: A Survey of the State-of-the-Art. Studies in Computational Intelligence, 173-196. doi:10.1007/978-3-540-68830-3_7 es_ES
dc.description.references Oh, S.-K., Kim, W.-D., & Pedrycz, W. (2012). Design of optimized cascade fuzzy controller based on differential evolution: Simulation studies and practical insights. Engineering Applications of Artificial Intelligence, 25(3), 520-532. doi:10.1016/j.engappai.2012.01.002 es_ES
dc.description.references Pan, I., Das, S., & Gupta, A. (2011). Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay. ISA Transactions, 50(1), 28-36. doi:10.1016/j.isatra.2010.10.005 es_ES
dc.description.references Rao, J. S., & Tiwari, R. (2009). Design optimization of double-acting hybrid magnetic thrust bearings with control integration using multi-objective evolutionary algorithms. Mechatronics, 19(6), 945-964. doi:10.1016/j.mechatronics.2009.06.011 es_ES
dc.description.references Reynoso-Meza, G., Blasco, X., & Sanchis, J. (2009). Diseño Multiobjetivo de controladores PID para el Benchmark de Control 2008–2009. Revista Iberoamericana de Automática e Informática Industrial RIAI, 6(4), 93-103. doi:10.1016/s1697-7912(09)70112-8 es_ES
dc.description.references Reynoso-Meza, G., Sanchis, J., Blasco, X., Herrero, J., september 2011a. Handling control engineer preferences: Getting the most of PI controllers. In: Emerging Technologies Factory Automation (ETFA), 2011 IEEE 16th Conference on. pp. 1-8. es_ES
dc.description.references Reynoso-Meza, G., Sanchis, J., Blasco, X., Herrero, J., june 2011b. Hybrid DE algorithm with adaptive crossover operator for solving real-world numerical optimization problems. In: Evolutionary Computation (CEC), 2011 IEEE Congress on. pp. 1551-1556. es_ES
dc.description.references Reynoso-Meza, G., Blasco, X., Sanchis, J., March 2012a. Optimización evolutiva multi-objetivo y selección multi-criterio para la ingeniería de control. In: X Simposio CEA de Ingeniería de Control. es_ES
dc.description.references Reynoso-Meza, G., García-Nieto, S., Sanchis, J., Blasco, X., 2012b. Controller tuning using multiobjective optimization algorithms: a global tuning framework. IEEE Transactions on Control Systems Article in press. es_ES
dc.description.references Reynoso-Meza, G., Sanchis, J., Blasco, X., & Herrero, J. M. (2012). Multiobjective evolutionary algorithms for multivariable PI controller design. Expert Systems with Applications, 39(9), 7895-7907. doi:10.1016/j.eswa.2012.01.111 es_ES
dc.description.references Reynoso-Meza, G., Blasco, X., Sanchis, J., & Herrero, J. M. (2013). Comparison of design concepts in multi-criteria decision-making using level diagrams. Information Sciences, 221, 124-141. doi:10.1016/j.ins.2012.09.049 es_ES
dc.description.references Romero-Pérez, J. A., Arrieta, O., Padula, F., Reynoso-Meza, G., Garcia-Nieto, S., & Balaguer, P. (2012). Estudio comparativo de algoritmos de auto-ajuste de controladores PID. Resultados del Benchmark 2010-2011 del Grupo de Ingeniería de Control de CEA. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(2), 182-193. doi:10.1016/j.riai.2012.02.009 es_ES
dc.description.references Roy, R., Hinduja, S., & Teti, R. (2008). Recent advances in engineering design optimisation: Challenges and future trends. CIRP Annals, 57(2), 697-715. doi:10.1016/j.cirp.2008.09.007 es_ES
dc.description.references Sanchis, J., Martínez, M. A., Blasco, X., & Reynoso-Meza, G. (2010). Modelling preferences in multi-objective engineering design. Engineering Applications of Artificial Intelligence, 23(8), 1255-1264. doi:10.1016/j.engappai.2010.07.005 es_ES
dc.description.references Santana-Quintero, L. V., Montaño, A. A., & Coello, C. A. C. (2010). A Review of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective Optimization. Evolutionary Learning and Optimization, 29-59. doi:10.1007/978-3-642-10701-6_2 es_ES
dc.description.references Saridakis, K. M., & Dentsoras, A. J. (2008). Soft computing in engineering design – A review. Advanced Engineering Informatics, 22(2), 202-221. doi:10.1016/j.aei.2007.10.001 es_ES
dc.description.references Shi, L., & Rasheed, K. (2010). A Survey of Fitness Approximation Methods Applied in Evolutionary Algorithms. Evolutionary Learning and Optimization, 3-28. doi:10.1007/978-3-642-10701-6_1 es_ES
dc.description.references Panda, S. (2011). Multi-objective PID controller tuning for a FACTS-based damping stabilizer using Non-dominated Sorting Genetic Algorithm-II. International Journal of Electrical Power & Energy Systems, 33(7), 1296-1308. doi:10.1016/j.ijepes.2011.06.002 es_ES
dc.description.references Skogestad, S. (2003). Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control, 13(4), 291-309. doi:10.1016/s0959-1524(02)00062-8 es_ES
dc.description.references Storn, R., & Price, K. (1997). Journal of Global Optimization, 11(4), 341-359. doi:10.1023/a:1008202821328 es_ES
dc.description.references Tan, W., Liu, J., Fang, F., & Chen, Y. (2004). Tuning of PID controllers for boiler-turbine units. ISA Transactions, 43(4), 571-583. doi:10.1016/s0019-0578(07)60169-4 es_ES
dc.description.references Tan, W. W., Lu, F., Loh, A. P., & Tan, K. C. (2005). Modeling and control of a pilot pH plant using genetic algorithm. Engineering Applications of Artificial Intelligence, 18(4), 485-494. doi:10.1016/j.engappai.2004.11.006 es_ES
dc.description.references Vilanova, R., & Alfaro, V. M. (2011). Control PID robusto: Una visión panorámica. Revista Iberoamericana de Automática e Informática Industrial RIAI, 8(3), 141-158. doi:10.1016/j.riai.2011.06.003 es_ES
dc.description.references Xue, Y., Li, D., & Gao, F. (2010). Multi-objective optimization and selection for the PI control of ALSTOM gasifier problem. Control Engineering Practice, 18(1), 67-76. doi:10.1016/j.conengprac.2009.09.004 es_ES
dc.description.references Zamani, M., Karimi-Ghartemani, M., Sadati, N., & Parniani, M. (2009). Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Engineering Practice, 17(12), 1380-1387. doi:10.1016/j.conengprac.2009.07.005 es_ES
dc.description.references Zhang, J., Zhuang, J., Du, H., & Wang, S. (2009). Self-organizing genetic algorithm based tuning of PID controllers. Information Sciences, 179(7), 1007-1018. doi:10.1016/j.ins.2008.11.038 es_ES
dc.description.references Zhao, S.-Z., Iruthayarajan, M. W., Baskar, S., & Suganthan, P. N. (2011). Multi-objective robust PID controller tuning using two lbests multi-objective particle swarm optimization. Information Sciences, 181(16), 3323-3335. doi:10.1016/j.ins.2011.04.003 es_ES
dc.description.references Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P. N., & Zhang, Q. (2011). Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 1(1), 32-49. doi:10.1016/j.swevo.2011.03.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem