- -

Los Sistemas de Suspensión Activa y Semiactiva: Una Revisión

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Los Sistemas de Suspensión Activa y Semiactiva: Una Revisión

Mostrar el registro completo del ítem

Hurel Ezeta, J.; Mandow, A.; García Cerezo, A. (2013). Los Sistemas de Suspensión Activa y Semiactiva: Una Revisión. Revista Iberoamericana de Automática e Informática industrial. 10(2):121-132. https://doi.org/10.1016/j.riai.2013.03.002

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144114

Ficheros en el ítem

Metadatos del ítem

Título: Los Sistemas de Suspensión Activa y Semiactiva: Una Revisión
Otro titulo: Active and Semi-active Suspension Systems: A Review
Autor: Hurel Ezeta, Jorge Mandow, Anthony García Cerezo, Alfonso
Fecha difusión:
Resumen:
[ES] El propósito de este artículo es efectuar una revisión del estado del conocimiento en el modelado y control de los sistemas de suspensión activa y semiactiva. Se analizan las principales características de los diferentes ...[+]


[EN] This paper reviews the state of the art in modeling and control of active and semi-active suspension systems. Distinctive characteristics are established for the major types of suspension systems: passive, active, and ...[+]
Palabras clave: Active suspension , Passive suspension , Models , Control , Simulación , Suspensión activa , Modelos , Suspensión pasiva , Robótica
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2013.03.002
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.1016/j.riai.2013.03.002
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2011-22443/ES/RAMBLER: HACIA LA AUTONOMIA EN ROBOTS DE EXPLORACION DE LARGO ALCANCE EN ESPACIOS NATURALES/
Agradecimientos:
Este trabajo ha sido realizado parcialmente gracias al apoyo del proyecto CICYT DPI 2011-22443. La estancia del primer autor en la Universidad de Málaga ha contado con la financiación de la Escuela Superior Politécnica del ...[+]
Tipo: Artículo Otros

References

Abdel-Rohman, M., John, M. J., & Hassan, M. F. (2010). Compensation of Time Delay Effect in Semi-active Controlled Suspension Bridges. Journal of Vibration and Control, 16(10), 1527-1558. doi:10.1177/1077546309106518

Allotta, B., Pugi, L., & Bartolini, F. (2008). Design and Experimental Results of an Active Suspension System for a High-Speed Pantograph. IEEE/ASME Transactions on Mechatronics, 13(5), 548-557. doi:10.1109/tmech.2008.2002145

Balike, K. P., Rakheja, S., & Stiharu, I. (2011). Development of kineto-dynamic quarter-car model for synthesis of a double wishbone suspension. Vehicle System Dynamics, 49(1-2), 107-128. doi:10.1080/00423110903401905 [+]
Abdel-Rohman, M., John, M. J., & Hassan, M. F. (2010). Compensation of Time Delay Effect in Semi-active Controlled Suspension Bridges. Journal of Vibration and Control, 16(10), 1527-1558. doi:10.1177/1077546309106518

Allotta, B., Pugi, L., & Bartolini, F. (2008). Design and Experimental Results of an Active Suspension System for a High-Speed Pantograph. IEEE/ASME Transactions on Mechatronics, 13(5), 548-557. doi:10.1109/tmech.2008.2002145

Balike, K. P., Rakheja, S., & Stiharu, I. (2011). Development of kineto-dynamic quarter-car model for synthesis of a double wishbone suspension. Vehicle System Dynamics, 49(1-2), 107-128. doi:10.1080/00423110903401905

Boada, M. J. L., Boada, B. L., Castejon, C., & Diaz, V. (2005). A fuzzy-based suspension vehicle depending on terrain. International Journal of Vehicle Design, 37(4), 311. doi:10.1504/ijvd.2005.006597

Boers, Y., Weiland, S., & Damen, A. (2002). Average H 2 control by randomized algorithms. International Journal of Control, 75(9), 637-644. doi:10.1080/00207170210134228

Bouazara, M., Gosselin-Brisson, S., & Richard, M. J. (2007). DESIGN OF AN ACTIVE SUSPENSION CONTROL FOR A VEHICLE MODEL USING A GENETIC ALGORITHM. Transactions of the Canadian Society for Mechanical Engineering, 31(3), 317-333. doi:10.1139/tcsme-2007-0021

Bronowicki, A. J., Abhyankar, N. S., & Griffin, S. F. (1999). Active vibration control of large optical space structures. Smart Materials and Structures, 8(6), 740-752. doi:10.1088/0964-1726/8/6/304

Cao, J., Li, P., & Liu, H. (2010). An Interval Fuzzy Controller for Vehicle Active Suspension Systems. IEEE Transactions on Intelligent Transportation Systems, 11(4), 885-895. doi:10.1109/tits.2010.2053358

Jiangtao Cao, Honghai Liu, Ping Li, & Brown, D. J. (2008). State of the Art in Vehicle Active Suspension Adaptive Control Systems Based on Intelligent Methodologies. IEEE Transactions on Intelligent Transportation Systems, 9(3), 392-405. doi:10.1109/tits.2008.928244

Chen, Y. (2009). Skyhook Surface Sliding Mode Control on Semi-Active Vehicle Suspension System for Ride Comfort Enhancement. Engineering, 01(01), 23-32. doi:10.4236/eng.2009.11004

Choi, S.-B., Lee, H.-S., & Park, Y.-P. (2002). H8 Control Performance of a Full-Vehicle Suspension Featuring Magnetorheological Dampers. Vehicle System Dynamics, 38(5), 341-360. doi:10.1076/vesd.38.5.341.8283

Christenson, R.E., 2001. Semiactive control of civil structures for natural hazard mitigation: Analytical and experimental studies. Ph.D. thesis, Department of Civil Engineering and Geological Sciences, Notre Dame, Indiana.

Díaz, I. M., Pereira, E., Hudson, M. J., & Reynolds, P. (2012). Enhancing active vibration control of pedestrian structures using inertial actuators with local feedback control. Engineering Structures, 41, 157-166. doi:10.1016/j.engstruct.2012.03.043

Dong, X., Yu, M., Liao, C., & Chen, W. (2009). Comparative research on semi-active control strategies for magneto-rheological suspension. Nonlinear Dynamics, 59(3), 433-453. doi:10.1007/s11071-009-9550-8

Fischer, D., & Isermann, R. (2004). Mechatronic semi-active and active vehicle suspensions. Control Engineering Practice, 12(11), 1353-1367. doi:10.1016/j.conengprac.2003.08.003

Fleming, P. ., & Purshouse, R. . (2002). Evolutionary algorithms in control systems engineering: a survey. Control Engineering Practice, 10(11), 1223-1241. doi:10.1016/s0967-0661(02)00081-3

FRUHAUF, F., KASPER, R., & LÜCKEL, J. (1985). Design of an Active Suspension for a Passenger Vehicle Model Using Input Processes with Time Delays. Vehicle System Dynamics, 14(1-3), 115-120. doi:10.1080/00423118508968811

Gao, R. Z., Xu, Z. Q., & Zhang, J. J. (2010). Optimization of Fuzzy Logic Rules Based on Improved Genetic Algorithm. Applied Mechanics and Materials, 44-47, 1496-1499. doi:10.4028/www.scientific.net/amm.44-47.1496

Guglielmino, E., & Edge, K. A. (2004). A controlled friction damper for vehicle applications. Control Engineering Practice, 12(4), 431-443. doi:10.1016/s0967-0661(03)00119-9

Guo, D. L., Hu, H. Y., & Yi, J. Q. (2004). Neural Network Control for a Semi-Active Vehicle Suspension with a Magnetorheological Damper. Journal of Vibration and Control, 10(3), 461-471. doi:10.1177/1077546304038968

Gysen, B. L. J., Janssen, J. L. G., Paulides, J. J. H., & Lomonova, E. A. (2009). Design Aspects of an Active Electromagnetic Suspension System for Automotive Applications. IEEE Transactions on Industry Applications, 45(5), 1589-1597. doi:10.1109/tia.2009.2027097

Heath, E.T., 2005. Vehicle active suspension system sensor reduction. Ph.D. thesis, University of Texas, Austin.

Hrovat, D. (1990). Optimal active suspension structures for quarter-car vehicle models. Automatica, 26(5), 845-860. doi:10.1016/0005-1098(90)90002-y

Hrovat, D. (1997). Survey of Advanced Suspension Developments and Related Optimal Control Applications11This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Editor Karl Johan Åström.,22Simple, mostly LQ-based optimal control concepts gave useful insight about performance potentials, bandwidth requirements, and optimal structure of advanced vehicle suspensions. The present paper reviews these optimal control applications and related practical developments. Automatica, 33(10), 1781-1817. doi:10.1016/s0005-1098(97)00101-5

Huang, S.-J., & Chen, H.-Y. (2006). Adaptive sliding controller with self-tuning fuzzy compensation for vehicle suspension control. Mechatronics, 16(10), 607-622. doi:10.1016/j.mechatronics.2006.06.002

Iagnemma, K., Rzepniewski, A., Dubowsky, S., & Schenker, P. (2003). Autonomous Robots, 14(1), 5-16. doi:10.1023/a:1020962718637

Karnopp, D. (1986). Theoretical Limitations in Active Vehicle Suspensions. Vehicle System Dynamics, 15(1), 41-54. doi:10.1080/00423118608968839

Karnopp, D., Crosby, M. J., & Harwood, R. A. (1974). Vibration Control Using Semi-Active Force Generators. Journal of Engineering for Industry, 96(2), 619-626. doi:10.1115/1.3438373

KARNOPP, D., & SO, S.-G. (1998). Energy Flow in Active Attitude Control Suspensions: A Bond Graph Analysis. Vehicle System Dynamics, 29(2), 69-81. doi:10.1080/00423119808969367

Kazerooni, H., Chu, A., & Steger, R. (2007). That Which Does Not Stabilize, Will Only Make Us Stronger. The International Journal of Robotics Research, 26(1), 75-89. doi:10.1177/0278364907074472

Kim, C., Ro, P. I., & Kim, H. (1999). Effect of the suspension structure on equivalent suspension parameters. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 213(5), 457-470. doi:10.1243/0954407991527026

Donghyun Kim, Sungho Hwang, & Hyunsoo Kim. (2008). Vehicle Stability Enhancement of Four-Wheel-Drive Hybrid Electric Vehicle Using Rear Motor Control. IEEE Transactions on Vehicular Technology, 57(2), 727-735. doi:10.1109/tvt.2007.907016

Koch, G., Fritsch, O., & Lohmann, B. (2010). Potential of low bandwidth active suspension control with continuously variable damper. Control Engineering Practice, 18(11), 1251-1262. doi:10.1016/j.conengprac.2010.03.007

Korkmaz, S. (2011). A review of active structural control: challenges for engineering informatics. Computers & Structures, 89(23-24), 2113-2132. doi:10.1016/j.compstruc.2011.07.010

Koulocheris D.V., Dertimanis V.K., 2009. Design of a novel hybrid optimization algorithm. In: ICINCO 6th International Conference on Informatics in Control, Automation and Robotics. Vol. 1 ICSO. pp. 129-135.

Kowal, J., Pluta, J., Konieczny, J., & Kot, A. (2008). Energy Recovering in Active Vibration Isolation System — Results of Experimental Research. Journal of Vibration and Control, 14(7), 1075-1088. doi:10.1177/1077546308088980

Kumar, M.S., 2008. Development of active suspension system for automobiles using PID controller. In: Proceedings of the World Congress on Engineering. Vol. II. London, UK.

Lan, K.-J., Yen, J.-Y., & Kramar, J. A. (2004). Sliding mode control for active vibration isolation of a long range scanning tunneling microscope. Review of Scientific Instruments, 75(11), 4367-4373. doi:10.1063/1.1807005

Lee, H. (2004). Virtual Test Track. IEEE Transactions on Vehicular Technology, 53(6), 1818-1826. doi:10.1109/tvt.2004.836958

Lee, H.-J., Jung, H.-J., Cho, S.-W., & Lee, I.-W. (2008). An Experimental Study of Semiactive Modal Neuro-control Scheme Using MR Damper for Building Structure. Journal of Intelligent Material Systems and Structures, 19(9), 1005-1015. doi:10.1177/1045389x07083024

Lee, H.-S., & Choi, S.-B. (2000). Control and Response Characteristics of a Magneto-Rheological Fluid Damper for Passenger Vehicles. Journal of Intelligent Materials Systems and Structures, 11(1), 80-87. doi:10.1177/104538900772664422

Yu-Chen Lin, Chun-Liang Lin, & Niahn-Chung Shieh. (2006). A hybrid evolutionary approach for robust active suspension design of light rail vehicles. IEEE Transactions on Control Systems Technology, 14(4), 695-706. doi:10.1109/tcst.2006.876639

Lizarraga, J., Sala, J. A., & Biera, J. (2008). Modelling of friction phenomena in sliding conditions in suspension shock absorbers. Vehicle System Dynamics, 46(sup1), 751-764. doi:10.1080/00423110802037024

Lou, Z., Ervin, R. D., & Filisko, F. E. (1994). A Preliminary Parametric Study of Electrorheological Dampers. Journal of Fluids Engineering, 116(3), 570-576. doi:10.1115/1.2910315

MALEK, K. M., & HEDRICK, J. K. (1985). Decoupled Active Suspension Design for Improved Automotive Ride Quality/Handling Performance. Vehicle System Dynamics, 14(1-3), 78-81. doi:10.1080/00423118508968802

Mántaras, D. A., Luque, P., & Vera, C. (2004). Development and validation of a three-dimensional kinematic model for the McPherson steering and suspension mechanisms. Mechanism and Machine Theory, 39(6), 603-619. doi:10.1016/j.mechmachtheory.2003.12.006

Margolis, D., & Shim, T. (2001). A bond graph model incorporating sensors, actuators, and vehicle dynamics for developing controllers for vehicle safety. Journal of the Franklin Institute, 338(1), 21-34. doi:10.1016/s0016-0032(00)00068-5

Mei, T., Foo, T., Goodall, R., 2005. Genetic algorithms for optimising active controls in railway vehicles. IEE Colloquium (Digest) 521, 10/1-10/8.

Mei, T. X., & Goodall, R. M. (2002). Use of multiobjective genetic algorithms to optimize inter-vehicle active suspensions. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 216(1), 53-63. doi:10.1243/0954409021531683

Mudi, R. K., & Pal, N. R. (1999). A robust self-tuning scheme for PI- and PD-type fuzzy controllers. IEEE Transactions on Fuzzy Systems, 7(1), 2-16. doi:10.1109/91.746295

Nagai, M., Moran, A., Tamura, Y., & Koizumi, S. (1997). Identification and control of nonlinear active pneumatic suspension for railway vehicles, using neural networks. Control Engineering Practice, 5(8), 1137-1144. doi:10.1016/s0967-0661(97)00107-x

Nehl, T. W., Betts, J. A., & Mihalko, L. S. (1996). An integrated relative velocity sensor for real-time damping applications. IEEE Transactions on Industry Applications, 32(4), 873-881. doi:10.1109/28.511644

Nguyen, L.H., Park, S., Turnip, A., Hong, K.-S., 2009. Modified skyhook control of a suspension system with hydraulic strut mount. In: ICCAS-SICE, 2009. pp. 1347-1352.

Olsson, C. (2006). Active automotive engine vibration isolation using feedback control. Journal of Sound and Vibration, 294(1-2), 162-176. doi:10.1016/j.jsv.2005.10.022

Papegay, Y. A., Merlet, J.-P., & Daney, D. (2005). Exact kinematics analysis of Car’s suspension mechanisms using symbolic computation and interval analysis. Mechanism and Machine Theory, 40(4), 395-413. doi:10.1016/j.mechmachtheory.2003.07.003

Patil, N. J., Chile, D. R. H., & Waghmare, D. L. M. (2010). Fuzzy Adaptive Controllers for Speed Control of PMSM Drive. International Journal of Computer Applications, 1(11), 91-98. doi:10.5120/233-387

POETSCH, G., EVANS, J., MEISINGER, R., KORTÜM, W., BALDAUF, W., VEITL, A., & WALLASCHEK, J. (1997). Pantograph/Catenary Dynamics and Control. Vehicle System Dynamics, 28(2-3), 159-195. doi:10.1080/00423119708969353

Potau, X., Comellas, M., Nogués, M., & Roca, J. (2011). Comparison of different bogie configurations for a vehicle operating in rough terrain. Journal of Terramechanics, 48(1), 75-84. doi:10.1016/j.jterra.2010.06.002

Rattasiri, W., & Halgamuge, S. K. (2003). Computationally advantageous and stable hierarchical fuzzy systems for active suspension. IEEE Transactions on Industrial Electronics, 50(1), 48-61. doi:10.1109/tie.2002.807676

Palupi Rini, D., Mariyam Shamsuddin, S., & Sophiyati Yuhaniz, S. (2011). Particle Swarm Optimization: Technique, System and Challenges. International Journal of Computer Applications, 14(1), 19-27. doi:10.5120/1810-2331

Rivin, E. I. (1985). Passive Engine Mounts-Some Directions for Further Development. SAE Technical Paper Series. doi:10.4271/850481

ROTH, P.-A., & LIZELL, M. (1996). A Lateral Semi-Active Damping System For Trains. Vehicle System Dynamics, 25(sup1), 585-598. doi:10.1080/00423119608969222

Samin, J. C., Brüls, O., Collard, J. F., Sass, L., & Fisette, P. (2007). Multiphysics modeling and optimization of mechatronic multibody systems. Multibody System Dynamics, 18(3), 345-373. doi:10.1007/s11044-007-9076-0

Sassi, S., Cherif, K., Mezghani, L., Thomas, M., & Kotrane, A. (2005). An innovative magnetorheological damper for automotive suspension: from design to experimental characterization. Smart Materials and Structures, 14(4), 811-822. doi:10.1088/0964-1726/14/4/041

Schiehlen, W. (2007). Research trends in multibody system dynamics. Multibody System Dynamics, 18(1), 3-13. doi:10.1007/s11044-007-9064-4

Schiehlen, W., Guse, N., & Seifried, R. (2006). Multibody dynamics in computational mechanics and engineering applications. Computer Methods in Applied Mechanics and Engineering, 195(41-43), 5509-5522. doi:10.1016/j.cma.2005.04.024

Schoenfeld, K., Hartmut, G., Hesse, 1991. Electronically controlled air suspension (ECAS) for commercial vehicles. SAE Special Publications 892, 15-24.

Sharp, R. S., & Hassan, S. A. (1986). The Relative Performance Capabilities of Passive, Active and Semi-Active Car Suspension Systems. Proceedings of the Institution of Mechanical Engineers, Part D: Transport Engineering, 200(3), 219-228. doi:10.1243/pime_proc_1986_200_183_02

Yongjun Shen, Shaopu Yang, & Wanjian Yin. (2006). Application of Magnetorheological Damper in Vibration Control of Locomotive. 2006 6th World Congress on Intelligent Control and Automation. doi:10.1109/wcica.2006.1713554

Shirahatti, A., Prasad, P. S. S., Panzade, P., & Kulkarni, M. M. (2008). Optimal design of passenger car suspension for ride and road holding. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 30(1), 66-76. doi:10.1590/s1678-58782008000100010

Siau, G.R., July 2008. Equivalent spring and damper for conceptual suspension modeling. Master's thesis, Eindhoven University of Technology.

Spelta, C., Previdi, F., Savaresi, S. M., Fraternale, G., & Gaudiano, N. (2009). Control of magnetorheological dampers for vibration reduction in a washing machine. Mechatronics, 19(3), 410-421. doi:10.1016/j.mechatronics.2008.09.006

Spencer, B. F., Dyke, S. J., Sain, M. K., & Carlson, J. D. (1997). Phenomenological Model for Magnetorheological Dampers. Journal of Engineering Mechanics, 123(3), 230-238. doi:10.1061/(asce)0733-9399(1997)123:3(230)

Tang, X., Zuo, L., 2010. Regenerative semi-active control of tall building vibration with series TMDs. No. 5530485. pp. 5094-5099.

Thompson, Davis, B., 1991. A technical note on the lotus suspension patents. Vehicle System Dynamics 20 (6), 381-383.

Venugopal, R., Beine, M., & Ruekgauer, A. (2002). Real-time simulation of adaptive suspension control using dSPACE control development tools. International Journal of Vehicle Design, 29(1/2), 128. doi:10.1504/ijvd.2002.002005

Waldron, K. J., & Abdallah, M. E. (2007). An Optimal Traction Control Scheme for Off-Road Operation of Robotic Vehicles. IEEE/ASME Transactions on Mechatronics, 12(2), 126-133. doi:10.1109/tmech.2007.892819

Wang, J., Fan, Z., Terpenny, J. P., & Goodman, E. D. (2005). Knowledge Interaction With Genetic Programming in Mechatronic Systems Design Using Bond Graphs. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 35(2), 172-182. doi:10.1109/tsmcc.2004.841915

WANG, Q. (2008). Simultaneous Optimization of Mechanical and Control Parameters for Integrated Control System of Active Suspension and Electric Power Steering. Chinese Journal of Mechanical Engineering, 44(08), 67. doi:10.3901/jme.2008.08.067

Yagiz, N., & Yuksek, I. (2001). Sliding mode control of active suspensions for a full vehicle model. International Journal of Vehicle Design, 26(2/3), 264. doi:10.1504/ijvd.2001.001943

Yang, Y., Ren, W., Chen, L., Jiang, M., & Yang, Y. (2009). Study on ride comfort of tractor with tandem suspension based on multi-body system dynamics. Applied Mathematical Modelling, 33(1), 11-33. doi:10.1016/j.apm.2007.10.011

Yoshimura, T., Nakaminami, K., Kurimoto, M., & Hino, J. (1999). Active suspension of passenger cars using linear and fuzzy-logic controls. Control Engineering Practice, 7(1), 41-47. doi:10.1016/s0967-0661(98)00145-2

Zapateiro, M., Karimi, H. R., & Luo, N. (2011). Semiactive vibration control of nonlinear structures through adaptive backstepping techniques withH∞performance. International Journal of Systems Science, 42(5), 853-861. doi:10.1080/00207721.2010.502263

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem