- -

Un algoritmo secuencial, aleatorio y óptimo para problemas de factibilidad robusta

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Un algoritmo secuencial, aleatorio y óptimo para problemas de factibilidad robusta

Show full item record

Álamo, T.; Tempo, R.; Ramírez, D.; Luque, A.; Camacho, E. (2013). Un algoritmo secuencial, aleatorio y óptimo para problemas de factibilidad robusta. Revista Iberoamericana de Automática e Informática industrial. 10(1):50-61. https://doi.org/10.1016/j.riai.2012.11.005

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144132

Files in this item

Item Metadata

Title: Un algoritmo secuencial, aleatorio y óptimo para problemas de factibilidad robusta
Secondary Title: A sequentially optimal randomized algorithm for robust feasibility problems
Author: Álamo, T. Tempo, R. Ramírez, D.R. Luque, A. Camacho, E.F.
Issued date:
Abstract:
[ES] En este trabajo (del cual se presentó una versión preliminar en Alamo et al. (2007)) se propone un algoritmo aleatorio para determinar la factibilidad robusta de un conjunto de desigualdades lineales matriciales (Linear ...[+]


[EN] This paper proposes a randomized algorithm for feasibility of uncertain LMIs. The algorithm is based on the solution of a sequence of semidefinite optimization problems involving a reduced number of constraints. A ...[+]
Subjects: Robust feasibility , Linear matrix inequalities , Randomized algorithms , Robust control , Factibilidad robusta , Desigualdades lineales matriciales , Algoritmos aleatorios , Control robusto
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2012.11.005
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.1016/j.riai.2012.11.005
Project ID:
MICINN/DPI2010-21589-C05-01
Thanks:
Los autores agradecen la financiacion del Ministerio de Ciencia e Innovación mediante el proyecto DPI2010-21589-C05-01.
Type: Artículo

References

Alamo, T., Tempo, R., & Camacho, E. F. (2009). Randomized Strategies for Probabilistic Solutions of Uncertain Feasibility and Optimization Problems. IEEE Transactions on Automatic Control, 54(11), 2545-2559. doi:10.1109/tac.2009.2031207

Alamo, T., Tempo, R., Ramírez, D. R., & Camacho, E. F. (2008). A new vertex result for robustness problems with interval matrix uncertainty. Systems & Control Letters, 57(6), 474-481. doi:10.1016/j.sysconle.2007.11.003

Alamo, T., Tempo, R., Ramirez, D.R., Camacho, E.F., 2007. A sequentially optimal randomized algorithm for robust lmi feasibility problems. In: Proceedings of the European Control Conference. Kos, Greece. [+]
Alamo, T., Tempo, R., & Camacho, E. F. (2009). Randomized Strategies for Probabilistic Solutions of Uncertain Feasibility and Optimization Problems. IEEE Transactions on Automatic Control, 54(11), 2545-2559. doi:10.1109/tac.2009.2031207

Alamo, T., Tempo, R., Ramírez, D. R., & Camacho, E. F. (2008). A new vertex result for robustness problems with interval matrix uncertainty. Systems & Control Letters, 57(6), 474-481. doi:10.1016/j.sysconle.2007.11.003

Alamo, T., Tempo, R., Ramirez, D.R., Camacho, E.F., 2007. A sequentially optimal randomized algorithm for robust lmi feasibility problems. In: Proceedings of the European Control Conference. Kos, Greece.

Apkarian, P., Gahinet, P., Becker, G., 1995. Self-scheduled H∞ control of linear parameter-varying systems: a design example. Automatica 31 (9), 1251-1261. DOI: DOI: 10.1016/0005-1098(95)00038-X.

Apkarian, P., Tuan, H.D., 2000. Parameterized lmis in control theory. SIAM Journal on Control and Optimization 38 (4), 1241-1264. DOI: 10.1137/S036301299732612X.

Barmish, B., 1994. New Tools for Robustness of Linear Systems. MacMillan Publishing Company, New York, USA.

Barmish, B., Scherbakov, P., December 2000. On avoiding vertexization of robustness problems: The approximate feasibility concept. In: Proceedings of the 39th IEEE Conference on Decision and Control. Sydney, Australia, pp. 1031-1036.

Becker, G., Packard, A., 1994. Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback. Systems and Control Letters 23 (3), 205-215. DOI: 10.1016/0167-6911(94)90006-X.

Ben-Tal, A., Nemirovski, A., 2001. Lectures on Modern Convex Optimization. Analysis, Algorithms, and Engineering Applications. MPS/SIAM Series on Optimization, Philadelphia, PA.

Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V., 1994. Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia, PA.

Calafiore, G. C., & Campi, M. C. (2006). The Scenario Approach to Robust Control Design. IEEE Transactions on Automatic Control, 51(5), 742-753. doi:10.1109/tac.2006.875041

Calafiore, G. C., & Dabbene, F. (2007). A probabilistic analytic center cutting plane method for feasibility of uncertain LMIs. Automatica, 43(12), 2022-2033. doi:10.1016/j.automatica.2007.04.003

Calafiore, G., Dabbene, F., & Tempo, R. (2007). A survey of randomized algorithms for control synthesis and performance verification. Journal of Complexity, 23(3), 301-316. doi:10.1016/j.jco.2007.01.003

Calafiore, G., & Polyak, B. T. (2001). Stochastic algorithms for exact and approximate feasibility of robust LMIs. IEEE Transactions on Automatic Control, 46(11), 1755-1759. doi:10.1109/9.964685

Calafiore, G. C., Dabbene, F., & Tempo, R. (2011). Research on probabilistic methods for control system design. Automatica, 47(7), 1279-1293. doi:10.1016/j.automatica.2011.02.029

Feron, E., Apkarian, P., & Gahinet, P. (1996). Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions. IEEE Transactions on Automatic Control, 41(7), 1041-1046. doi:10.1109/9.508913

Fujisaki, Y., Dabbene, F., & Tempo, R. (2003). Probabilistic design of LPV control systems. Automatica, 39(8), 1323-1337. doi:10.1016/s0005-1098(03)00108-0

Kanev, S., De Schutter, B., & Verhaegen, M. (2003). An ellipsoid algorithm for probabilistic robust controller design. Systems & Control Letters, 49(5), 365-375. doi:10.1016/s0167-6911(03)00115-4

Liberzon, D., & Tempo, R. (2004). Common Lyapunov Functions and Gradient Algorithms. IEEE Transactions on Automatic Control, 49(6), 990-994. doi:10.1109/tac.2004.829632

Nemirovskii, A. (1993). Several NP-hard problems arising in robust stability analysis. Mathematics of Control, Signals, and Systems, 6(2), 99-105. doi:10.1007/bf01211741

Oishi, Y., December 2003. Probabilistic design of a robust state-feedback controller based on parameter-dependent Lyapunov functions. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, Hawaii USA, pp. 1920-1925.

Polyak, B. T., & Tempo, R. (2001). Probabilistic robust design with linear quadratic regulators. Systems & Control Letters, 43(5), 343-353. doi:10.1016/s0167-6911(01)00117-7

Scokaert, P. O. M., Mayne, D. Q., & Rawlings, J. B. (1999). Suboptimal model predictive control (feasibility implies stability). IEEE Transactions on Automatic Control, 44(3), 648-654. doi:10.1109/9.751369

Tempo, R., Calafiore, G., Dabbene, F., 2005. Randomized Algorithms for Analysis and Control of Uncertain Systems. Communications and Control Engineering Series. Springer-Verlag, London.

Tuan, H., Apkarian, P., Nguyen, T., dec 2001. Robust and reduced-order filtering: new lmi-based characterizations and methods. Signal Processing, IEEE Transactions on 49 (12), 2975-2984. DOI: 10.1109/78.969506.

Wan, Z., & Kothare, M. V. (2002). Robust output feedback model predictive control using off-line linear matrix inequalities. Journal of Process Control, 12(7), 763-774. doi:10.1016/s0959-1524(02)00003-3

Zhou, K., Doyle, J., Glover, K., 1996. Robust and Optimal Control. Prentice Hall, Englewood Cliff, NJ.

[-]

This item appears in the following Collection(s)

Show full item record