Alamo, T., Tempo, R., & Camacho, E. F. (2009). Randomized Strategies for Probabilistic Solutions of Uncertain Feasibility and Optimization Problems. IEEE Transactions on Automatic Control, 54(11), 2545-2559. doi:10.1109/tac.2009.2031207
Alamo, T., Tempo, R., Ramírez, D. R., & Camacho, E. F. (2008). A new vertex result for robustness problems with interval matrix uncertainty. Systems & Control Letters, 57(6), 474-481. doi:10.1016/j.sysconle.2007.11.003
Alamo, T., Tempo, R., Ramirez, D.R., Camacho, E.F., 2007. A sequentially optimal randomized algorithm for robust lmi feasibility problems. In: Proceedings of the European Control Conference. Kos, Greece.
[+]
Alamo, T., Tempo, R., & Camacho, E. F. (2009). Randomized Strategies for Probabilistic Solutions of Uncertain Feasibility and Optimization Problems. IEEE Transactions on Automatic Control, 54(11), 2545-2559. doi:10.1109/tac.2009.2031207
Alamo, T., Tempo, R., Ramírez, D. R., & Camacho, E. F. (2008). A new vertex result for robustness problems with interval matrix uncertainty. Systems & Control Letters, 57(6), 474-481. doi:10.1016/j.sysconle.2007.11.003
Alamo, T., Tempo, R., Ramirez, D.R., Camacho, E.F., 2007. A sequentially optimal randomized algorithm for robust lmi feasibility problems. In: Proceedings of the European Control Conference. Kos, Greece.
Apkarian, P., Gahinet, P., Becker, G., 1995. Self-scheduled H∞ control of linear parameter-varying systems: a design example. Automatica 31 (9), 1251-1261. DOI: DOI: 10.1016/0005-1098(95)00038-X.
Apkarian, P., Tuan, H.D., 2000. Parameterized lmis in control theory. SIAM Journal on Control and Optimization 38 (4), 1241-1264. DOI: 10.1137/S036301299732612X.
Barmish, B., 1994. New Tools for Robustness of Linear Systems. MacMillan Publishing Company, New York, USA.
Barmish, B., Scherbakov, P., December 2000. On avoiding vertexization of robustness problems: The approximate feasibility concept. In: Proceedings of the 39th IEEE Conference on Decision and Control. Sydney, Australia, pp. 1031-1036.
Becker, G., Packard, A., 1994. Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback. Systems and Control Letters 23 (3), 205-215. DOI: 10.1016/0167-6911(94)90006-X.
Ben-Tal, A., Nemirovski, A., 2001. Lectures on Modern Convex Optimization. Analysis, Algorithms, and Engineering Applications. MPS/SIAM Series on Optimization, Philadelphia, PA.
Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V., 1994. Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia, PA.
Calafiore, G. C., & Campi, M. C. (2006). The Scenario Approach to Robust Control Design. IEEE Transactions on Automatic Control, 51(5), 742-753. doi:10.1109/tac.2006.875041
Calafiore, G. C., & Dabbene, F. (2007). A probabilistic analytic center cutting plane method for feasibility of uncertain LMIs. Automatica, 43(12), 2022-2033. doi:10.1016/j.automatica.2007.04.003
Calafiore, G., Dabbene, F., & Tempo, R. (2007). A survey of randomized algorithms for control synthesis and performance verification. Journal of Complexity, 23(3), 301-316. doi:10.1016/j.jco.2007.01.003
Calafiore, G., & Polyak, B. T. (2001). Stochastic algorithms for exact and approximate feasibility of robust LMIs. IEEE Transactions on Automatic Control, 46(11), 1755-1759. doi:10.1109/9.964685
Calafiore, G. C., Dabbene, F., & Tempo, R. (2011). Research on probabilistic methods for control system design. Automatica, 47(7), 1279-1293. doi:10.1016/j.automatica.2011.02.029
Feron, E., Apkarian, P., & Gahinet, P. (1996). Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions. IEEE Transactions on Automatic Control, 41(7), 1041-1046. doi:10.1109/9.508913
Fujisaki, Y., Dabbene, F., & Tempo, R. (2003). Probabilistic design of LPV control systems. Automatica, 39(8), 1323-1337. doi:10.1016/s0005-1098(03)00108-0
Kanev, S., De Schutter, B., & Verhaegen, M. (2003). An ellipsoid algorithm for probabilistic robust controller design. Systems & Control Letters, 49(5), 365-375. doi:10.1016/s0167-6911(03)00115-4
Liberzon, D., & Tempo, R. (2004). Common Lyapunov Functions and Gradient Algorithms. IEEE Transactions on Automatic Control, 49(6), 990-994. doi:10.1109/tac.2004.829632
Nemirovskii, A. (1993). Several NP-hard problems arising in robust stability analysis. Mathematics of Control, Signals, and Systems, 6(2), 99-105. doi:10.1007/bf01211741
Oishi, Y., December 2003. Probabilistic design of a robust state-feedback controller based on parameter-dependent Lyapunov functions. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, Hawaii USA, pp. 1920-1925.
Polyak, B. T., & Tempo, R. (2001). Probabilistic robust design with linear quadratic regulators. Systems & Control Letters, 43(5), 343-353. doi:10.1016/s0167-6911(01)00117-7
Scokaert, P. O. M., Mayne, D. Q., & Rawlings, J. B. (1999). Suboptimal model predictive control (feasibility implies stability). IEEE Transactions on Automatic Control, 44(3), 648-654. doi:10.1109/9.751369
Tempo, R., Calafiore, G., Dabbene, F., 2005. Randomized Algorithms for Analysis and Control of Uncertain Systems. Communications and Control Engineering Series. Springer-Verlag, London.
Tuan, H., Apkarian, P., Nguyen, T., dec 2001. Robust and reduced-order filtering: new lmi-based characterizations and methods. Signal Processing, IEEE Transactions on 49 (12), 2975-2984. DOI: 10.1109/78.969506.
Wan, Z., & Kothare, M. V. (2002). Robust output feedback model predictive control using off-line linear matrix inequalities. Journal of Process Control, 12(7), 763-774. doi:10.1016/s0959-1524(02)00003-3
Zhou, K., Doyle, J., Glover, K., 1996. Robust and Optimal Control. Prentice Hall, Englewood Cliff, NJ.
[-]