- -

Control desacoplado de un actuador de rigidez variable para robots asistenciales

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control desacoplado de un actuador de rigidez variable para robots asistenciales

Mostrar el registro completo del ítem

Medina, J.; Jardón, A.; Balaguer, C. (2016). Control desacoplado de un actuador de rigidez variable para robots asistenciales. Revista Iberoamericana de Automática e Informática industrial. 13(1):80-91. https://doi.org/10.1016/j.riai.2015.11.002

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144160

Ficheros en el ítem

Metadatos del ítem

Título: Control desacoplado de un actuador de rigidez variable para robots asistenciales
Otro titulo: Decoupled control of a variable stiffness actuator for assistive robots
Autor: Medina, J. Jardón, A. Balaguer, C.
Fecha difusión:
Resumen:
[EN] The variable stiffness actuators are devices that change the position and stiffness of a robot simultaneously. In recent years have been designed and developed many devices of this type, hoping to ensure safety in ...[+]


[ES] Los actuadores de rigidez variable son dispositivos que permiten cambiar la posición y rigidez articular de un robot en forma simultánea. En los últimos años se han diseñado y desarrollado muchos dispositivos de este ...[+]
Palabras clave: Robot control , Nonlinear systems , Feedback linearization , Man/machine interation , Control de robot , Sistemas no lineales , Linealización por realimentación , Interacción hombre-máquina
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2015.11.002
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.riai.2015.11.002
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2010-21047-C02-01/ES/ASISTENTE ROBOTICO COGNITIVO PARA PERSONAS CON NECESIDADES ESPECIALES/
info:eu-repo/grantAgreement/Gobierno de la Comunidad de Madrid//S2009%2FDPI-1559/ES/Robots de servicios para la mejora de la calidad de vida de los ciudadanos en áreas metropolitanas (fase II)/
Agradecimientos:
La investigación que lleva a estos resultados ha recibido financiación del proyecto ARCADIA DPI2010-21047-C02-01, la subvención del proyecto CICYT en nombre del Ministerio de Economía y Competitividad español, y del proyecto ...[+]
Tipo: Artículo

References

Control of pneumatic muscle actuators. (1995). IEEE Control Systems, 15(1), 40-48. doi:10.1109/37.341863

Braun, D., Howard, M., & Vijayakumar, S. (2012). Optimal variable stiffness control: formulation and application to explosive movement tasks. Autonomous Robots, 33(3), 237-253. doi:10.1007/s10514-012-9302-3

GORIS, K., SALDIEN, J., VANDERBORGHT, B., & LEFEBER, D. (2011). MECHANICAL DESIGN OF THE HUGGABLE ROBOT PROBO. International Journal of Humanoid Robotics, 08(03), 481-511. doi:10.1142/s0219843611002563 [+]
Control of pneumatic muscle actuators. (1995). IEEE Control Systems, 15(1), 40-48. doi:10.1109/37.341863

Braun, D., Howard, M., & Vijayakumar, S. (2012). Optimal variable stiffness control: formulation and application to explosive movement tasks. Autonomous Robots, 33(3), 237-253. doi:10.1007/s10514-012-9302-3

GORIS, K., SALDIEN, J., VANDERBORGHT, B., & LEFEBER, D. (2011). MECHANICAL DESIGN OF THE HUGGABLE ROBOT PROBO. International Journal of Humanoid Robotics, 08(03), 481-511. doi:10.1142/s0219843611002563

Hogan, N. (1985). Impedance Control: An Approach to Manipulation: Part III—Applications. Journal of Dynamic Systems, Measurement, and Control, 107(1), 17-24. doi:10.1115/1.3140701

Huete, A. J., Victores, J. G., Martinez, S., Gimenez, A., & Balaguer, C. (2012). Personal Autonomy Rehabilitation in Home Environments by a Portable Assistive Robot. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(4), 561-570. doi:10.1109/tsmcc.2011.2159201

Khatib, O., 1995. Inertial properties in robotic manipulation: An object-level framework. The International Journal of Robotics Research 14 (1), 19-36. URL http://ijr.sagepub.com/content/14/1/19.abstract.

Lozano, R., & Brogliato, B. (1992). Adaptive control of robot manipulators with flexible joints. IEEE Transactions on Automatic Control, 37(2), 174-181. doi:10.1109/9.121619

Ozgoli, S., Taghirad, H. D., 2004. A survey on the control of flexible joint robots.

Pfeifer, R., Lungarella, M., & Iida, F. (2007). Self-Organization, Embodiment, and Biologically Inspired Robotics. Science, 318(5853), 1088-1093. doi:10.1126/science.1145803

Vanderborght, B., Tsagarakis, N. G., Van Ham, R., Thorson, I., & Caldwell, D. G. (2011). MACCEPA 2.0: compliant actuator used for energy efficient hopping robot Chobino1D. Autonomous Robots, 31(1), 55-65. doi:10.1007/s10514-011-9230-7

Vanderborght, B., Van Ham, R., Verrelst, B., Van Damme, M., & Lefeber, D. (2008). Overview of the Lucy Project: Dynamic Stabilization of a Biped Powered by Pneumatic Artificial Muscles. Advanced Robotics, 22(10), 1027-1051. doi:10.1163/156855308x324749

Villegas, D., Van Damme, M., Vanderborght, B., Beyl, P., & Lefeber, D. (2012). Third–Generation Pleated Pneumatic Artificial Muscles for Robotic Applications: Development and Comparison with McKibben Muscle. Advanced Robotics, 26(11-12), 1205-1227. doi:10.1080/01691864.2012.689722

Yang, C., Ganesh, G., Haddadin, S., Parusel, S., Albu-Schaeffer, A., & Burdet, E. (2011). Human-Like Adaptation of Force and Impedance in Stable and Unstable Interactions. IEEE Transactions on Robotics, 27(5), 918-930. doi:10.1109/tro.2011.2158251

Lingqi Zeng, & Bone, G. M. (2008). Design of foam covering for robotic arms to ensure human safety. 2008 Canadian Conference on Electrical and Computer Engineering. doi:10.1109/ccece.2008.4564717

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem