- -

Modelo Biomecánico de una Prótesis de Pierna

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Modelo Biomecánico de una Prótesis de Pierna

Show full item record

Bravo M., DA.; Rengifo R., CF. (2014). Modelo Biomecánico de una Prótesis de Pierna. Revista Iberoamericana de Automática e Informática industrial. 11(4):417-425. https://doi.org/10.1016/j.riai.2014.08.003

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144169

Files in this item

Item Metadata

Title: Modelo Biomecánico de una Prótesis de Pierna
Secondary Title: Biomechanical Model of a Prosthetic Leg
Author: Bravo M., Diego A. Rengifo R., Carlos F.
Issued date:
Abstract:
[EN] This paper presents the biomechanical model of a prosthetic leg. In order to study the change of speed in the joint prosthesisstump upon impact of the foot with the ground is modeled as a spring-damper system, allowing ...[+]


[ES] En este trabajo se presenta el modelo biomecánico de una prótesis de pierna. Con el objetivo de estudiar el cambio de velocidad en la unión prótesis-muñón al momento del impacto del pie con el suelo, está se modeló ...[+]
Subjects: Human gait , Biomechanical model , Prosthesis , Simulation , Marcha humana , Modelo biomecánico , Prótesis , Simulación
Copyrigths: Reserva de todos los derechos
Source:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2014.08.003
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.riai.2014.08.003
Thanks:
Los autores expresan sus mas sinceros agradecimientos a la Universidad del Cauca en Colombia por todo el apoyo académico y financiero brindado en este proyecto.
Type: Artículo

References

Anitescu, M., & Potra, F. A. (1997). Nonlinear Dynamics, 14(3), 231-247. doi:10.1023/a:1008292328909

Colombo, G., Filippi, S., Rizzi, C., & Rotini, F. (2010). A new design paradigm for the development of custom-fit soft sockets for lower limb prostheses. Computers in Industry, 61(6), 513-523. doi:10.1016/j.compind.2010.03.008

Dellon, B., & Matsuoka, Y. (2007). Prosthetics, exoskeletons, and rehabilitation [Grand Challenges of Robotics]. IEEE Robotics & Automation Magazine, 14(1), 30-34. doi:10.1109/mra.2007.339622 [+]
Anitescu, M., & Potra, F. A. (1997). Nonlinear Dynamics, 14(3), 231-247. doi:10.1023/a:1008292328909

Colombo, G., Filippi, S., Rizzi, C., & Rotini, F. (2010). A new design paradigm for the development of custom-fit soft sockets for lower limb prostheses. Computers in Industry, 61(6), 513-523. doi:10.1016/j.compind.2010.03.008

Dellon, B., & Matsuoka, Y. (2007). Prosthetics, exoskeletons, and rehabilitation [Grand Challenges of Robotics]. IEEE Robotics & Automation Magazine, 14(1), 30-34. doi:10.1109/mra.2007.339622

Ferris, A. E., Aldridge, J. M., Rábago, C. A., & Wilken, J. M. (2012). Evaluation of a Powered Ankle-Foot Prosthetic System During Walking. Archives of Physical Medicine and Rehabilitation, 93(11), 1911-1918. doi:10.1016/j.apmr.2012.06.009

Hobara, H., Baum, B. S., Kwon, H.-J., Miller, R. H., Ogata, T., Kim, Y. H., & Shim, J. K. (2013). Amputee locomotion: Spring-like leg behavior and stiffness regulation using running-specific prostheses. Journal of Biomechanics, 46(14), 2483-2489. doi:10.1016/j.jbiomech.2013.07.009

Jiménez-Fabián, R., & Verlinden, O. (2012). Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Medical Engineering & Physics, 34(4), 397-408. doi:10.1016/j.medengphy.2011.11.018

Lee, J. H., Yi, B.-J., & Lee, J. Y. (2012). Adjustable spring mechanisms inspired by human musculoskeletal structure. Mechanism and Machine Theory, 54, 76-98. doi:10.1016/j.mechmachtheory.2012.03.012

Martins, M. M., Santos, C. P., Frizera-Neto, A., & Ceres, R. (2012). Assistive mobility devices focusing on Smart Walkers: Classification and review. Robotics and Autonomous Systems, 60(4), 548-562. doi:10.1016/j.robot.2011.11.015

Nandi, G. C., Ijspeert, A. J., Chakraborty, P., & Nandi, A. (2009). Development of Adaptive Modular Active Leg (AMAL) using bipedal robotics technology. Robotics and Autonomous Systems, 57(6-7), 603-616. doi:10.1016/j.robot.2009.02.002

Wentink, E. C., Koopman, H. F. J. M., Stramigioli, S., Rietman, J. S., & Veltink, P. H. (2013). Variable stiffness actuated prosthetic knee to restore knee buckling during stance: A modeling study. Medical Engineering & Physics, 35(6), 838-845. doi:10.1016/j.medengphy.2012.08.016

Whittlesey, S. N., van Emmerik, R. E. A., & Hamill, J. (2000). The Swing Phase of Human Walking Is Not a Passive Movement. Motor Control, 4(3), 273-292. doi:10.1123/mcj.4.3.273

Xie, H.-L., Liang, Z.-Z., Li, F., & Guo, L.-X. (2010). The knee joint design and control of above-knee intelligent bionic leg based on magneto-rheological damper. International Journal of Automation and Computing, 7(3), 277-282. doi:10.1007/s11633-010-0503-y

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record