- -

Modelado y Control de un Exoesqueleto para la Rehabilitación de Extremidad Inferior con dos grados de libertad

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelado y Control de un Exoesqueleto para la Rehabilitación de Extremidad Inferior con dos grados de libertad

Mostrar el registro completo del ítem

López, R.; Aguilar, H.; Salazar, S.; Lozano, R.; Torres, JA. (2014). Modelado y Control de un Exoesqueleto para la Rehabilitación de Extremidad Inferior con dos grados de libertad. Revista Iberoamericana de Automática e Informática industrial. 11(3):304-314. https://doi.org/10.1016/j.riai.2014.02.008

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144171

Ficheros en el ítem

Metadatos del ítem

Título: Modelado y Control de un Exoesqueleto para la Rehabilitación de Extremidad Inferior con dos grados de libertad
Otro titulo: Modeling and Control of a Exoskeleton for Lower Limb Rehabilitation with two degrees of freedom
Autor: López, Ricardo Aguilar, Hipólito Salazar, Sergio Lozano, Rogelio Torres, Jorge A.
Fecha difusión:
Resumen:
[EN] Exoskeletons are robots attached to the extremities of the human body focused on increasing their strength, speed and performance primarily. The applications are in the military, industry and medical. The exoskeleton ...[+]


[ES] Los exoesqueletos mecánicos son robots acoplados a las extremidades del cuerpo humano enfocados en el incremento de su fuerza, velocidad y rendimiento principalmente. Las principales aplicaciones son en la milicia, ...[+]
Palabras clave: Mechanical Exoskeleton , Rehabilitation , Force control , SEA Actuators , Exoesqueleto Mecánico , Rehabilitación , Control de Fuerza , Actuador SEA
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2014.02.008
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.riai.2014.02.008
Tipo: Artículo

References

Bharadwaj, K., Sugar, T.G., 2006. Kinematics of a robotic gait trainer for stroke rehabilitation. in Proceedings of the IEEE International Conference on Robotics and Automation, (ICRA ‘06) pp. 3492-3497.

Bouri, M., Gall, B.L., Clavel, R., 2009. A new concept of parallel robot for rehabilitation and fitness: the lambda. in Proceedings of the IEEE International Conference on Robotics and Biomimetics, (ROBIO ‘09) pp. 2503-2508.

Bouri, M., Stauffer, Y., Schmitt, C., 2006. The walktrainer: a robotic system for walking rehabilitation. in Proceedings of the IEEE International Conference on Robotics and Biomimetics, (ROBIO ‘06) pp. 1616-1621. [+]
Bharadwaj, K., Sugar, T.G., 2006. Kinematics of a robotic gait trainer for stroke rehabilitation. in Proceedings of the IEEE International Conference on Robotics and Automation, (ICRA ‘06) pp. 3492-3497.

Bouri, M., Gall, B.L., Clavel, R., 2009. A new concept of parallel robot for rehabilitation and fitness: the lambda. in Proceedings of the IEEE International Conference on Robotics and Biomimetics, (ROBIO ‘09) pp. 2503-2508.

Bouri, M., Stauffer, Y., Schmitt, C., 2006. The walktrainer: a robotic system for walking rehabilitation. in Proceedings of the IEEE International Conference on Robotics and Biomimetics, (ROBIO ‘06) pp. 1616-1621.

Bullimore, S.R., Burn, J.F. J. T., 2007. Ability of the planar spring mass model to predict mechanical parameters in running humans.

Derrick, T.R., Caldewell, G.E., Hamill, J., 2000. Mass spring damper modeling of the human body to study running and hopping: an overview.

Ding, Y., Sivak, M., Weinberg, B., Mavroidis, C., Holden, M.K., 2010. Nuvabat: northeastern university virtual ankle and balance trainer. in Proceedings of the IEEE Haptics Symposium, (HAPTICS ‘10) pp. 509-514.

Feldman, A.G., 1974. Change in the length of the muscle as a consequence of a shift in equilibrium in the muscle-load system. Biophys vol. 19, pp. 544-548.

Ferris, D.P., Sawicki, G.S., Domingo, A.R., 2005. Powered lower limb orthoses for gait rehabilitation. Topics in Spinal Cord Injury Rehabilitation vol. 11, no. 2, pp. 34-49.

Glynn, A., Fiddler, H., 2009. The physiotherapist's pocket guide to exercise, assessment, prescription and training. ELSEVIER.

Goffer, A., 2006. Gait-locomotor apparatus US patent number 7 153 242.

Hogan, N., 1980. Mechanical impedance control in assistive devices and manipulators. Joint Automatic Control.

Hogan, N., 1984. Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Automat. Contr. vol. 29, pp. 681-690.

Hogan, N., 1985. The mechanics of multi-joint posture and movement. Biological Cybern vol. 52, pp. 315-331.

Homma, K., Usuba, M., 2007. Development of ankle dorsiflexion/plantarflexion exercise device with passive mechanical joint. in Proceedings of the 10th IEEE International Conference on Rehabilitation Robotics, (ICORR ‘07) pp. 292-297.

Hoppenfeld, S., Murthyr, V.L., 2001. Fracturas tratamiento y rehabilitacion. MARBAN First Edition.

Huston, R.L., 2012. Principles of biomechanics. University of Rhode Island CRC Press.

Hwang, S., Kim, J., Yi, J., Tae, K., Ryu, K.,, Kim, Y., 2006. Development of an active ankle foot orthosis for the prevention of foot drop and toe drag. in Proceedings of the International Conference on Biomedical and Pharmaceutical Engineering, (ICBPE ‘06) pp. 418-423.

Kawamoto, H., Sankai, Y., 2002. Power assist system hal-3 for gait disorder person. in Proceedings of the 8th International Conference on Computers Helping People with Special Needs pp. 196-203.

Kawamoto, H., T. Hayashi, Sakurai, T., Eguchi, K., Sankai, Y., 2009. Development of single leg version of hal for hemiplegia. in Proceedings of the 31st Annual International Conference of the IEEE Engineering inMedicine and Biology Society, (EMBC ‘09) pp. 5038-5043.

Kelso, J.A. S., Holt, K.G., 1980. Exploring a vibratory systems analysis of human movement production. Neurophys vol. 43, pp. 1183-1196.

Khalil, H.K., 2002. Nonlinear systems. Third Edition pp. 433.

Khanna, I., Roy, A., Rodgers, M.M., Krebs, H.I., MacKo, R.M., Forrester, L.W., 2010. Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke. Journal of NeuroEngineering and Rehabilitation vol. 7, no. 1, article 23.

Kikuchi, T., Oda, K., Furusho, J., 2010. Leg-robot for demonstration of spastic movements of brain-injured patients with compact magnetorheological fluid clutch. Advanced Robotics vol. 24, no. 16, pp. 671-686.

Krebs, H.I., Dipietro, L., Levy-Tzedek, S., 2008. A paradigm shift for rehabilitation robotics. IEEE Engineering in Medicine and Biology Magazine vol. 27, no. 4, pp. 61-70.

Nichols, T.R., Houk, J.C., 1976. The improvement in linearity and the regulation of stiffness that results from the actions of the stretch reflex. Jornal of Neurophysiology vol. 39, pp. 119-142.

Nikitczuk, J., Weinberg, B., Canavan, P.K., Mavroidis, C., 2010. Active knee rehabilitation orthotic device with variable damping characteristics implemented via an electrorheological fluid. IEEE/ASME Transactions on Mechatronics vol. 15, no. 6, Article ID 5353649, pp. 952-960.

Nikooyan, A.A., Zadpoor, A.A., 2011. Modeling the stiffnes characteristics of the human body while running with various stride lengths.

Peshkin, M., Brown, D.A., Munne, J.J. S., 2005. Kineassist: a robotic overground gait and balance training device. in Proceedings of the 9th IEEE International Conference on Rehabilitation Robotics pp. 241-246.

Pratt, G.A., Williamson, M.M., 1995. Series elastic actuator. IEEE.

Pratt, J., Krupp, B., Morse, C., 2002. Series elastic actuators for high fidelity force control. Industrial Robot: An International Journal 29 (3), 234-241.

Pratt, J.E., Krupp, B.T., Morse, C.J., Collins, S.H., 2004. The roboknee: an exoskeleton for enhancing strength and endurance during walking. In: Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on. Vol. 3. IEEE, pp. 2430-2435.

Robinson, D.W., Pratt, J.E., Paluska, D.J., Pratt, G.A., 1999. Series elastic actuator development for a biomimetic walking robot. IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

Rocon, E., Rúız, A., Belda-Lois, J., Moreno, J., Pons, J.L., Raya, R., Ceres, R., 2008. Diseño, desarrollo y validación de dispositivo robótico para la supresión del temblor patológico. Revista Iberoamericana de Automática e Informatica Industrial vol. 5 (núm. 2), pp. 79-92.

Roy, A., Krebs, H.I., Patterson, S.L., 2007. Measurement of human ankle stiffness using the anklebot. in Proceedings of the 10th IEEE International Conference on Rehabilitation Robotics, (ICORR ‘07) pp. 356-363.

Satici, A.C., Erdogan, A., Patoglu, V., 2009. Design of a reconfigurable ankle rehabilitation robot and its use for the estimation of the ankle impedance. in Proceedings of the IEEE International Conference on Rehabilitation Robotics, (ICORR ‘09) pp. 257-264.

Sawicki, G.S., Ferris, D.P., 2009. A pneumatically powered kneeankle-foot orthosis (kafo) with myoelectric activation and inhibition. Journal of NeuroEngineering and Rehabilitation vol. 6, p. 23.

Schmitt, C., Metrailler, P., Al-Khodairy, A., 2004. The motion maker: a rehabilitation system combining an orthosis with closed-loop electrical muscle stimulation. in Proceedings of the 8th Vienna International Workshop on Functional Electrical Stimulation pp. 117-120.

Seo, K.H., Lee, J.J., 2009. The development of two mobile gait rehabilitation systems. IEEE Transactions on Neural Systems and Rehabilitation Engineering vol. 17, no. 2, Article ID 4785182, pp. 156-166.

Spong, M., Vidyasagar, M., 1989. Robot dynamics and control John Wiley and Sons.

Sui, P., Yao, L., Lin, Z., Yan, H., Dai, J.S., 2009. Analysis and synthesis of ankle motion and rehabilitation robots. in Proceedings of the IEEE International Conference on Robotics and Biomimetics, (ROBIO ‘09) pp. 2533-2538.

Vidyasagar, M., 1993. Nonlinear systems analysis Prentice hall,New Jersey.

Wyeth, G., 2006. Information technology and electrical engineering. IEEE.

Yoon, J., Novandy, B., Yoon, C.H., Park, K.J., 2010. A 6-dof gait rehabilitation robot with upper and lower limb connections that allows walking velocity updates on various terrains. IEEE/ASME Transactions on Mechatronics vol. 15, no. 2, Article ID 5424007, pp. 201-215.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem