- -

Interfaz visual para un Autocolimador Nikon 6D mediante procesamiento de imágenes con precisión sub-píxel: un caso de estudio

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Interfaz visual para un Autocolimador Nikon 6D mediante procesamiento de imágenes con precisión sub-píxel: un caso de estudio

Mostrar el registro completo del ítem

Schurrer, C.; Flesia, A.; Bergues, G.; Ames, G.; Canali, L. (2014). Interfaz visual para un Autocolimador Nikon 6D mediante procesamiento de imágenes con precisión sub-píxel: un caso de estudio. Revista Iberoamericana de Automática e Informática industrial. 11(3):327-336. https://doi.org/10.1016/j.riai.2014.05.004

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144177

Ficheros en el ítem

Metadatos del ítem

Título: Interfaz visual para un Autocolimador Nikon 6D mediante procesamiento de imágenes con precisión sub-píxel: un caso de estudio
Otro titulo: Visual interface for a Nikon 6D autocollimator through sub-pixel image processing: a case study
Autor: Schurrer, C. Flesia, A.G. Bergues, G. Ames, G. Canali, L.
Fecha difusión:
Resumen:
[EN] The goal of this paper is to describe the potential of a ba- sic visual interfase applied to a Nikon 6B/6D autocollimator in order to replace human operator within a “laboratory grade” measurement. The implemented ...[+]


[ES] Este documento tiene el objetivo de describir el potencial de una interfaz visual básica en un Autocolimador del tipo Nikon 6B/6D, para reemplazar al operario en una medición de calidad metrológica. La interfaz visual ...[+]
Palabras clave: Autocolimador , Sensor CMOS , Interfaz visual , Precisión subpixel , Autocollimator , CMOS sensor , Image processing , Subpixel accuracy
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2014.05.004
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.riai.2014.05.004
Código del Proyecto:
info:eu-repo/grantAgreement/ANPCyT//PICT-2008-00291/
info:eu-repo/grantAgreement/FonCyT//PID UTN 2012-25%2FE170/
info:eu-repo/grantAgreement/FonCyT//PID UTN 1406/
info:eu-repo/grantAgreement/FonCyT//PID 2012 05%2DB504/
Agradecimientos:
Este trabajo ha sido subsidiado parcialmente por las agencias Foncyt, Secyt-UNC y Secyt-UTN, mediante los instrumentos PICT 2008-00291, PID UTN 2012- 25/E170, PID UTN 1406, PID 2012 05/B504.
Tipo: Artículo

References

Aggarwal, N., & Karl, W. C. (2006). Line detection in images through regularized hough transform. IEEE Transactions on Image Processing, 15(3), 582-591. doi:10.1109/tip.2005.863021

Alcock, S. G., Sawhney, K. J. S., Scott, S., Pedersen, U., Walton, R., Siewert, F., … Lammert, H. (2010). The Diamond-NOM: A non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 616(2-3), 224-228. doi:10.1016/j.nima.2009.10.137

Goldsmith, N. T. (2011). DEEP FOCUS; A DIGITAL IMAGE PROCESSING TECHNIQUE TO PRODUCE IMPROVED FOCAL DEPTH IN LIGHT MICROSCOPY. Image Analysis & Stereology, 19(3), 163. doi:10.5566/ias.v19.p163-167 [+]
Aggarwal, N., & Karl, W. C. (2006). Line detection in images through regularized hough transform. IEEE Transactions on Image Processing, 15(3), 582-591. doi:10.1109/tip.2005.863021

Alcock, S. G., Sawhney, K. J. S., Scott, S., Pedersen, U., Walton, R., Siewert, F., … Lammert, H. (2010). The Diamond-NOM: A non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 616(2-3), 224-228. doi:10.1016/j.nima.2009.10.137

Goldsmith, N. T. (2011). DEEP FOCUS; A DIGITAL IMAGE PROCESSING TECHNIQUE TO PRODUCE IMPROVED FOCAL DEPTH IN LIGHT MICROSCOPY. Image Analysis & Stereology, 19(3), 163. doi:10.5566/ias.v19.p163-167

Born, M., Wolf, W. 1998. Principles of optics, 6th edition. Cambridge Univer- sity Press. Chapter IV, Image forming instrument, 233-255.

Canabal, H. (2001). Laser beam deflectometry based on a subpixel resolution algorithm. Optical Engineering, 40(11), 2517. doi:10.1117/1.1409939

Fabijańska, A., & Sankowski, D. (2008). Computer vision system for high temperature measurements of surface properties. Machine Vision and Applications, 20(6), 411-421. doi:10.1007/s00138-008-0135-1

Fernandes, L. A. F., Oliveira, M. M., da Silva, R., & Crespo, G. J. (2006). A fast and accurate approach for computing the dimensions of boxes from single perspective images. Journal of the Brazilian Computer Society, 12(2), 19-30. doi:10.1007/bf03192392

Hermosilla, T., Bermejo, E., Balaguer, A., & Ruiz, L. A. (2008). Non-linear fourth-order image interpolation for subpixel edge detection and localization. Image and Vision Computing, 26(9), 1240-1248. doi:10.1016/j.imavis.2008.02.012

Ma, L., Zhou, S., Ouyang, H., He, Z., Rong, W., & Sun, L. (2012). Image sub-pixel recognition method for optical precise adjustment. 2012 IEEE International Conference on Mechatronics and Automation. doi:10.1109/icma.2012.6284348

Maronna, R. A., Martin, R. D., & Yohai, V. J. (2006). Robust Statistics. Wiley Series in Probability and Statistics. doi:10.1002/0470010940

Martinelli, P., Musazzi, S., & Perini, U. (1994). An autocollimator based optical system for precise angular alignment control over large exploring areas. Review of Scientific Instruments, 65(4), 1012-1014. doi:10.1063/1.1145105

Choroś, K. (2012). Detection of Tennis Court Lines for Sport Video Categorization. Lecture Notes in Computer Science, 304-314. doi:10.1007/978-3-642-34707-8_31

Park, J. B., Lee, J. G., Lee, M. K., & Lee, E. S. (2011). A glass thickness measuring system using the machine vision method. International Journal of Precision Engineering and Manufacturing, 12(5), 769-774. doi:10.1007/s12541-011-0102-z

Ying-Dong, Q., Cheng-Song, C., San-Ben, C., & Jin-Quan, L. (2005). A fast subpixel edge detection method using Sobel–Zernike moments operator. Image and Vision Computing, 23(1), 11-17. doi:10.1016/j.imavis.2004.07.003

Soufli, R., Fernandez-Perea, M., Baker S. L., Robinson, J. C., Gullikson, E. M., Heimann, P., Yashchuk, V.V., McKinney, W.R., Schlotter, W.F., Rowen, M. 2012. Development and calibration of mirrors and gratings for the soft X-ray materials science beamline at the Linac Coherent Light Source free-electron laser. Applied Optics, 20:51(12), 2118-2128.

Tan, J. (2007). Further improvement of edge location accuracy of charge-coupled-device laser autocollimators using orthogonal Fourier-Mellin moments. Optical Engineering, 46(5), 057007. doi:10.1117/1.2735287

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem