- -

Controladores multivariables para un vehículo autónomo terrestre: Comparación basada en la fiabilidad del software

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Controladores multivariables para un vehículo autónomo terrestre: Comparación basada en la fiabilidad del software

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cañas, Norberto es_ES
dc.contributor.author Hernández, Wilmar es_ES
dc.contributor.author González, Gabriel es_ES
dc.contributor.author Sergiyenko, Oleg es_ES
dc.date.accessioned 2020-05-22T18:47:39Z
dc.date.available 2020-05-22T18:47:39Z
dc.date.issued 2014-04-13
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/144182
dc.description.abstract [ES] Se presenta en este artículo la comparación de tres controladores de velocidad (regulador cuadrático lineal-LQR-, proporcional integral derivativo-PID-y borroso) con la intención de determinar cuál de ellos ofrece mejor fiabilidad desde una perspectiva software. Para realizar las pruebas necesarias se utilizaron versiones mutantes de controladores bien ajustados, en los que se inyectaron defectos que simulaban errores de programación. Los controladores fueron diseñados para operar un vehículo autónomo terrestre y fueron ajustados por medio de un algoritmo genético.Dado el elevado número de pruebas a efectuar se decidió construir un simulador multicomputador con el que se realizaron más de 90000 ensayos. En cada uno de los ensayos se sometió a cada controlador mutante a la realización de un recorrido, de unos 20 minutos de duración máxima, sobre un suelo ligeramente ondulado. Con los datos obtenidos se generaron las curvas de fiabilidad por el procedimiento de Kaplan-Meier, lo cual permitió la comparación de controladores objetivo del estudio.De las curvas de fiabilidad del software obtenidas se deduce que, en las condiciones experimentales planteadas, el controlador LQR ofrece el mejor comportamiento, el segundo lugar le corresponde al controlador PID y el tercero al controlador borroso. es_ES
dc.description.abstract [EN] In this paper, three multivariable speed controllers (linear quadratic regulator-LQR, proportional integral derivative - PID, and Fuzzy) were compared with each other to find which one has the best software reliability. The reliability tests were conducted on perturbed controllers with injected faults, simulating typical programmer errors. These controllers were designed to operate in an autonomous ground vehicle, and they were tuned by using a genetic algorithm. Given the large number of tests to be performed it was decided to build a multi-computer simulator in which they were carried out more than 90000 essays. In each of the trials, the perturbed controllers were subjected to a tour of approximately 20 minutes on a slightly wavy ground. With the obtained data, the reliability curves were elaborated by means of the Kaplan-Meier procedure, and this allowed their comparison which was the aim of this research. Under the observed experimental conditions, the LQR controller provides the best behavior, the second position belongs to the PID controller, and the third one to the fuzzy controller. es_ES
dc.description.sponsorship Esta investigación ha sido financiada por el Ministerio de Ciencia e Innovación (MICINN) de España bajo el proyecto de investigación TEC2010-17429. es_ES
dc.language Español es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Software reliability es_ES
dc.subject Autonomous mobile robots es_ES
dc.subject Simulators es_ES
dc.subject LQR controller es_ES
dc.subject PID controller es_ES
dc.subject Fuzzy controller es_ES
dc.subject Fiabilidad del software es_ES
dc.subject Robots móviles autónomos es_ES
dc.subject Simuladores es_ES
dc.subject Método de control LQR es_ES
dc.subject Controlador PID es_ES
dc.subject Control borroso es_ES
dc.title Controladores multivariables para un vehículo autónomo terrestre: Comparación basada en la fiabilidad del software es_ES
dc.title.alternative Multivariable controllers for an autonomous ground vehicle: comparison based on software reliability es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2014.02.002
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-17429/ES/SENSOR ROBUSTO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Cañas, N.; Hernández, W.; González, G.; Sergiyenko, O. (2014). Controladores multivariables para un vehículo autónomo terrestre: Comparación basada en la fiabilidad del software. Revista Iberoamericana de Automática e Informática industrial. 11(2):179-190. https://doi.org/10.1016/j.riai.2014.02.002 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2014.02.002 es_ES
dc.description.upvformatpinicio 179 es_ES
dc.description.upvformatpfin 190 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9458 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Albertos, P., Sala, A., 2004. Multivariable Control Systems: An Engineering Approach. Springer, pp. 303-309. es_ES
dc.description.references Albus, J.S., Aug. 1985. Hierarchical Control for Robots and Teleoperators. En: IEEE Workshop on Intelligent Control. pp. 1-14. es_ES
dc.description.references Albus, J.S., McCain, H.G., Lumia, R., 1989. NASA/NBS Standard Reference Model for Telerobot Control System Architecture (NASREM). NIST Technical note 1235. Tech. rep., National Institute of Standards and Technology. es_ES
dc.description.references Arena, P., Fortuna, L., Frasca, M., Turco, G.L., Patané, L., Russo, R., 2005. A new simulation tool for action-oriented perception systems. En: Proceedings of 10th IEEE Conference on Emerging Technologies and Factory Automation . pp. 571-577. es_ES
dc.description.references Arkin, R.C., Mar. 1987. Motor Schema Based Navigation for a Movile Robot. En: Proceedings of the IEEE International Conference on Robotics and Automation. pp. 264-271. es_ES
dc.description.references Bensalem, S., Gallien, M., Ingrand, F., Kahloul, I., Thanh-Hung, N., 2009. Designing Autonomous Robots. IEEE Robotics and Automation Magazine 16 (1), 67-77. es_ES
dc.description.references Brooks, R.A., Mar. 1986. A Robust Layered Control System for a Movile Robot. IEEE Journal of Robotics and Automation RA-2 (1), 14-23. es_ES
dc.description.references Burns, A., Wellings, A., 1997. Real-Time Systems and Programming Languages. Addison-Wesley, pp. 422-424. es_ES
dc.description.references Burns, R.S., 2001. Advanced Control Engineering. Butterwoth-Heinemann, pp. 326-347. es_ES
dc.description.references Carlson, J., Murphy, R.R., Jun. 2005. How UGVs Physically Fail in the Field. IEEE Transaction on Robotics 21 (3), 423-437. es_ES
dc.description.references Cheng, T.Y., Merkel, R., Jun. 2008. An Upper Bound on Software Testing Effectiveness. ACM Transcations on Software Engineering and Methodology 17 (3), 16:1-16:27. es_ES
dc.description.references Fay, M.P., Shaw, P.A., Aug. 2010. Exact and Asymptotic Weighted Logrank Test for Interval Censored Data: The Interval R Package. Journal of Statistical Software 36 (2), 1-34. es_ES
dc.description.references Fossen, T.I., 1999. Guidance and Control of Ocean Vehicles. John Wiley & Sons, pp. 5-28. es_ES
dc.description.references Franklin, G.F., Powell, J.D., Workman, M.L., 1990. Digital Control of Dynamic Systems. Addison Wesley, Ch. 2. es_ES
dc.description.references gon Roh, S., Yang, K.W., Park, J.H., Moon, H., Kim, H.-S., Lee, H., Choi, H. R., Apr. 2009. A Modularized Personal Robot DRP I: Design and Implementation. IEEE Transaction on Robotics 25 (2), 414-425. es_ES
dc.description.references Gong, Y., Xu, W., Li, X., Nov. 2003. An Expression's Single Fault Model and the Testing Methods. En: Proceedings of the 12th Asian Test Symposium (ATS’03). es_ES
dc.description.references Good, P.I., Hardin, J.W., 2003. Common Errors in Statistics (and How to Avoid Them). John Wiley & Sons, Ch. 7, p. 100. es_ES
dc.description.references Goodwin, G.C., Graebe, S.F., Salgado, M.E., Jan. 2001. Control System Design. Prentice-Hall, pp. 672-674. es_ES
dc.description.references Henry, J., Stiff, J.C., Shirar, A.J., 2003. Assessing and Improving Testing of Real-time Software using Simulation. En: Proceedings of the 36th Annual Simulation Symposium. pp. 266-272. es_ES
dc.description.references Hernandez, W., Canas, N., Nov. 2011. Non-linear Control of an Autonomous Ground Vehicle. En: Proceedings of the 37th Annual Conference of the IEEE Industrial Electronics Society (IECON-2011). IEEE Industrial Electronicas Society, pp. 2601-2606. es_ES
dc.description.references Hydromechanics-Subcommittee, Apr. 1950. Nomenclature for Treating the Motion of a Submerged Body Through a Fluid. Tech. Rep. 1-5, The Society of Naval Architects and Marine Engineers (SNAME), New York (USA). es_ES
dc.description.references IEEE-Reliability-Society, Mar. 2008. IEEE Recommended Practice on Software Reliability. IEEE Std 1633-2008. Tech. rep., IEEE Reliability Society, 3 Park Avenue, New York, USA. es_ES
dc.description.references Isermann, R., 2008. Mechatronics systems-Innovative products with embedded control. Control Engineering Practice 16, 14-29. es_ES
dc.description.references Jeffrey, D., Gupta, N., Gupta, R., 2008. Fault localization using value replacement. En: Proceedings of the 2008 international symposium on Software testing and analysis (ISSTA ‘08). pp. 167-177. es_ES
dc.description.references Kleinbaum, D.G., Klein, M., 2005. Survival Analysis. A Self-Learning Text. Springer, Ch. 2. es_ES
dc.description.references Lau, M.F., Yu, Y.T., Jul. 2005. An Extended Fault Class Hierarchy for Specification-Based Testing . ACM Transactions on Software Engineering and Methodology (TOSEM) 14 (3), 247-276. es_ES
dc.description.references Lewin, D., Parag, A., 2003. A constrained genetic algorithm for decentralized control system structure selection and optimization. Automatica 39, 1801-1807. es_ES
dc.description.references McLinn, J., Jan. 2011. A short history of reliability. The Journal of the Reliability Information Analysis Center. es_ES
dc.description.references Montgomery, D.C., Runger, G.C., 2003. Applied Statistics and Probability for Engineers, 3rd Edición. John Wiley & Sons, Ch. 9.2.2. es_ES
dc.description.references Nilsson, N.J., Fikes, R.E., Oct. 1970. STRIPS: A New Approach to the Application ot Theorem Proving to Problem Solving. Technical note 43. SRI Project 8259. Tech. rep., Artificial Intelligence Group. Standford Research Institute. es_ES
dc.description.references Passino, K.M., Yurkovich, S., 1998. Fuzzy Control. Addison Wesley, pp. 58-73. es_ES
dc.description.references Raffo, G.V., Normey-Rico, J.E., Rubio, F.R., Kerlber, C.R., Jan. 2009. Control Predictivo en Cascada de un Vehículo Autónomo. Revista Iberoamericana de Automática e Informática Industrial 6 (1), 63-71. es_ES
dc.description.references Saleh, J., Marais, K., 2006. Highlights from the early (and pre-) history of reliability engineering. Reliability Engineering and System Safety 91, 249-256. es_ES
dc.description.references Sánchez-Peña, R.S., Sznaier, M., 1998. Robust Systems. Theory and Applications. John Wiley and Sons, Ch. 1.1.2. es_ES
dc.description.references Shooman, M.L., 2002. Reliability of Computer Systems and Networks. John Wiley & Sons, pp. 203-205. es_ES
dc.description.references Short, M., Pont, M.J., Fang, J., 2008. Assessment of performance and dependability in embedded control systems: Methodology and case study. Control Engineering Practice 16, 1293-1307. es_ES
dc.description.references Smidts, C., Huang, X., Widmaier, J.C., 2002. Producing reliable software: an experiment. The Journal of Systems and Software 61, 213-224. es_ES
dc.description.references Tian, J., 2005. Software Quality Engineering. Testing, Quality Assurance and Quantifiable Improvement. John Wiley and Sons, Ch. 22.1-22.4, pp. 371-380. es_ES
dc.description.references Xie, M., Dai, Y.-S., Poh, K.-L., 2004. Computing Systems Reliability. Models and Analysis. Kluwer Academic Publishers, Ch. 4. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem