Mostrar el registro sencillo del ítem
dc.contributor.author | Carlos Hernández, Salvador | es_ES |
dc.contributor.author | Sánchez, Edgar N, | es_ES |
dc.contributor.author | Béteau, Jean François | es_ES |
dc.contributor.author | Díaz Jiménez, Lourdes | es_ES |
dc.date.accessioned | 2020-05-22T18:56:13Z | |
dc.date.available | 2020-05-22T18:56:13Z | |
dc.date.issued | 2014-04-13 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/144191 | |
dc.description.abstract | [EN] This paper deals with a dynamical analysis of a lab scale anaerobic reactor, which is used for biogas production from wastewater treatment. The reaction volume inside the reactor is 5 L in a continuous operation with a flow rate of 0.5 L h-1. Using a pole-zero analysis, the step response and phase portrait analysis, two hydrodynamic behaviors of anaerobic bacteria are studied: dilution rate and biomass filter; this analysis is done via numerical simulations. The main objective is to determine the effect of bacteria immobilization and operating condition variations on the process properties: stability, substrate degradation, biogas production and operating regions. The obtained results show that bacteria immobilization improves the process performances since the attraction region to the treatment point is enlarged and the washout point is hard to be reached. This situation implies that a larger biomethane production can be obtained and larger input disturbances can be rejected. | es_ES |
dc.description.abstract | [ES] En este trabajo se presenta un análisis dinámico de un reactor anaeróbico a escala laboratorio, el cual es empleado para la obtención de biogás a partir del tratamiento de aguas residuales. El reactor utiliza un volumen de reacción de 5 L y es operado en modo continuo con un flujo de entrada de 0.5 L h-1. Utilizando análisis de polos y ceros, respuesta al escalón y retratos de fase, se estudian dos comportamientos hidrodinámicos de las poblaciones bacterianas: razón de dilución y filtro de biomasa; este análisis es realizado vía simulación. El objetivo principal es determinar el efecto de la inmovilización de bacterias en soportes sólidos, así como de variaciones de las condiciones de operación, sobre las propiedades del proceso: estabilidad, degradación de sustratos, producción de biogás y límites de las condiciones de operación. Con los resultados obtenidos se pretende establecer estrategias de control que permitan mejorar el desempeño de este tipo de procesos. | es_ES |
dc.description.sponsorship | Este trabajo ha sido realizado gracias al apoyo del Consejo Nacional de Ciencia y Tecnología, CONACYT, a través del financiamiento del proyecto 105844. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Anaerobic reactor | es_ES |
dc.subject | Biogas | es_ES |
dc.subject | Wastewater treatment | es_ES |
dc.subject | Dynamic Analysis | es_ES |
dc.subject | Process Control | es_ES |
dc.subject | Reactor anaeróbico | es_ES |
dc.subject | Biogás | es_ES |
dc.subject | Tratamiento de aguas residuales | es_ES |
dc.subject | Análisis dinámico | es_ES |
dc.subject | Control de procesos | es_ES |
dc.title | Análisis de un proceso de tratamiento de efluentes para producción de metano | es_ES |
dc.title.alternative | Dynamical Analysis of a wastewater treatment process for biogas production | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.riai.2014.02.006 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//105844/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Carlos Hernández, S.; Sánchez, EN.; Béteau, JF.; Díaz Jiménez, L. (2014). Análisis de un proceso de tratamiento de efluentes para producción de metano. Revista Iberoamericana de Automática e Informática industrial. 11(2):236-246. https://doi.org/10.1016/j.riai.2014.02.006 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.riai.2014.02.006 | es_ES |
dc.description.upvformatpinicio | 236 | es_ES |
dc.description.upvformatpfin | 246 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\9463 | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.description.references | Angelidaki, I., Ellegaard, L., Ahring, B.K., 1999. A Comprehensive Model of Anaerobic Bioconversion of Complex Substrates to Biogas. Biotechnology and Bioengineering 63(3), 363-372. | es_ES |
dc.description.references | Singh, A., Nizami, A.-S., Korres, N.E., Murphy, J.D., 2011. The effect of reactor design on the sustainability of grass biomethane. Renewable and Sustainable Energy Reviews 15(3), 1567-1574. | es_ES |
dc.description.references | Anjum, M., Khalid, A., Mahmood, T., Arshad, M. Anaerobic co-digestion of municipal solid organic waste with melon residues to enhance biodegradability and biogas production. Journal of Material Cycles and Waste Management. DOI:10.1007/s10163-012-0082-9. | es_ES |
dc.description.references | Azeiteiro C., I.F. Capela1 and A. C. Duarte, “Dynamic model simulations as a tool for evaluating the stability of an anaerobic process”. Water SA, vol. 27 No. 1, Jan. 2001, pp. 109-114. | es_ES |
dc.description.references | Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S., Pavlostathis, S., Rozzi, A., Sanders, W., Siegrist, H., Vavilin, V., 2002. The IWA Anaerobic Digestion Model No1. Water Science and Technology 45(10), 63-73. | es_ES |
dc.description.references | Beteau, J-F., 1992. Modelling and control of an industrial wastewater treatment bioprocess, in French, Ph.D. Thesis. INPG, France. | es_ES |
dc.description.references | Beteau, J-F., Otton, V., Hihn, J.Y., Delpech, F., Cheruy, A., 2005. Modelling of anaerobic digestion in a fluidised bed with a view to control. Biochemical Engineering Journal 24, 255-267. | es_ES |
dc.description.references | Chynoweth D.P., J.M. Owens and R. Legrand (2001). Renewable methane from anaerobic digestion of biomass. Renewable Energy, Vol. 22, No. 1-3, pp. 1-8. | es_ES |
dc.description.references | Cougnon, P., Dochain, D., Guay, M., Perrier, M. (2011). On-line optimization of fedbatch bioreactors by adaptive extremum seeking control. Journal of Process Control, 21, 1526-1532. | es_ES |
dc.description.references | Fernandez N., S. Montalvo, F. Fernandez-Polanco, L. Guerrero, I. Cortes, R. Borja, E. Sanchez, L. Travieso (2007). Real evidence about zeolite as microorganisms immobilizer in anaerobic fluidized bed reactors. Process Biochemistry, Vol. 42, pp. 721-728.Z. | es_ES |
dc.description.references | Díaz-Jiménez L., Herrera-Ramírez E. (2008). Caracterización fisicoquímica de tres minerales zeolíticos naturales. 43° Congreso Mexicano de Química, Tijuana, Mexico, 27 Septiembre - 01 Octubre. | es_ES |
dc.description.references | Giménez, J.B., Martí, N., Ferrer, J., Seco, A., 2012. Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: evaluation of methane losses with the effluent. Bioresource technology 118, 67-72. | es_ES |
dc.description.references | Griffin M. E., McMahon K. D., Mackie R. I. Raskin L., 1998; Methanogenic Population Dynamics during Start-Up of Anaerobic Digesters Treating Municipal Solid Waste and Biosolids. Biotechnol. Bioeng. 57(3), 342-355. | es_ES |
dc.description.references | Gunaseelan, V.N. (1997). Anaerobic digestion of biomass for methane production: a review. Biomass and Bioenergy, Vol. 13, No. 1, pp. 83-114. | es_ES |
dc.description.references | Hess, J., Bernard, O. (2008). Design and study of a risk management criterion for an unstable anaerobic wastewater treatment process. Journal of Process Control, 18, 71-79. | es_ES |
dc.description.references | Husain A., 1998. Mathematical models of the kinetics of anaerobic digestion – a selected review. Biomass Bioenergy 14(5/6), 561-571. | es_ES |
dc.description.references | Lettinga G., 1995. Anaerobic digestion and wastewater treatment systems. Antonie van Leeuwenhoek 67, 3-28. | es_ES |
dc.description.references | Liu Y., Xu H-L., Show K-Y., Tay J-H., 2002. Anaerobic granulation technology for wastewater treatment. World J. Microbiology & Biotechnology 18, 99-113. | es_ES |
dc.description.references | Lyberatos G., Skiadas I.V., 1999. Modelling of anaerobic digestion – A review. Global Nest: the Int. J. 1(2), 63-76. | es_ES |
dc.description.references | McCabe, J and W. Eckenfelder (1957). Biological Treatment of Sewage and Industrial Wastes. Two volumes. Reinhold Publishing. New York. | es_ES |
dc.description.references | McCarty P. L. 1964, Fundamentals of anaerobic digestion. Public Works, 95(9), 107-112. | es_ES |
dc.description.references | Milán, E. Sánchez, P. Weiland, R. Borja, A. Martín, K. Ilangovan. Influence of different natural zeolite concentrations on the anaerobic digestion of piggery waste. Bioresource Technology, Vol. 80, No. 1, 2001, pp. 37-43. | es_ES |
dc.description.references | Moletta R., Verrier D., Albagnac D., 1984. Dynamic modelling of anaerobic digestión. War. Res. 20(4), 427-434. | es_ES |
dc.description.references | Molino, A., Nanna, F., Ding, Y., Bikson, B., Braccio, G., 2012. Biomethane production by anaerobic digestion of organic waste. Fuel, In Press. DOI:10.1016/j.fuel.2012.07.070. | es_ES |
dc.description.references | Mousa L. and C. F. Forster, “The Use of Glucose as a Growth Factor to Counteract Inhibition in Anaerobic Digestion”. Process Safety and Envireonmental Protection, vol. 77, no. B4, Jul. 1999, pp. 193-198. | es_ES |
dc.description.references | Petre, E., Selisteanu, D., Sendrescu, D. (2013). Adaptive and robust-adaptive control strategies for anaerobic wastewater treatment bioprocesses. Chemical Engineering Journal, 217, 363-378. | es_ES |
dc.description.references | Pind P.F., I. Angelidaki, B.K. Ahring, K. Stamatelatou and G. Lyberatos. Monitoring and Control of Anaerobic Reactors. Advances in Biochemical Engineering/Biotechnology,Vol. 82, 2003. | es_ES |
dc.description.references | Rozzi A., 1984. Modelling and control of anaerobic digestion process, Trans. Inst. Matter. Chem. 6 (3), 153-159. | es_ES |
dc.description.references | Saravanan V., T.R. Sreekrishnan (2006). Modelling anaerobic biofilm reactors—A review. Journal of Environmental Management, Vol. 81, pp. 1-18. | es_ES |
dc.description.references | Sbarciog, M., Donoso-Bravo, A., Vande Wouwer, A. (2011). Evaluation of Steady State Multiplicity for the Anaerobic Degradation of Solid OrganicWaste. 21st European Symposium on Computer Aided Process Engineering – ESCAPE 21, Chalkidiki, Grecia. | es_ES |
dc.description.references | Slotine J-J. E., Li W., 1991. Applied Nonlinear Control. Prentice-Hall Inc, NY. | es_ES |
dc.description.references | Tietjen C (1975). From Biodung to biogas-Historical Review of European Experience. Energy, Agriculture, and Waste. p 274. | es_ES |
dc.description.references | Weiland, P. (2010). Biogas production: current state and perspectives. Applied Microbiology and Biotechnology, 85(4), 849-860. | es_ES |
dc.description.references | Zupancic, G.D., Škrjanec, I., Marinšek, L., 2012. Anaerobic co-digestion of excess brewery yeast in a granular biomass reactor to enhance the production of biomethane. Bioresource Technology 124, 328-337. DOI:10.1016/j.biortech.2012.08.064. | es_ES |