- -

Análisis de un proceso de tratamiento de efluentes para producción de metano

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Análisis de un proceso de tratamiento de efluentes para producción de metano

Mostrar el registro completo del ítem

Carlos Hernández, S.; Sánchez, EN.; Béteau, JF.; Díaz Jiménez, L. (2014). Análisis de un proceso de tratamiento de efluentes para producción de metano. Revista Iberoamericana de Automática e Informática industrial. 11(2):236-246. https://doi.org/10.1016/j.riai.2014.02.006

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144191

Ficheros en el ítem

Metadatos del ítem

Título: Análisis de un proceso de tratamiento de efluentes para producción de metano
Otro titulo: Dynamical Analysis of a wastewater treatment process for biogas production
Autor: Carlos Hernández, Salvador Sánchez, Edgar N, Béteau, Jean François Díaz Jiménez, Lourdes
Fecha difusión:
Resumen:
[EN] This paper deals with a dynamical analysis of a lab scale anaerobic reactor, which is used for biogas production from wastewater treatment. The reaction volume inside the reactor is 5 L in a continuous operation with ...[+]


[ES] En este trabajo se presenta un análisis dinámico de un reactor anaeróbico a escala laboratorio, el cual es empleado para la obtención de biogás a partir del tratamiento de aguas residuales. El reactor utiliza un volumen ...[+]
Palabras clave: Anaerobic reactor , Biogas , Wastewater treatment , Dynamic Analysis , Process Control , Reactor anaeróbico , Biogás , Tratamiento de aguas residuales , Análisis dinámico , Control de procesos
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2014.02.006
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.riai.2014.02.006
Código del Proyecto:
info:eu-repo/grantAgreement/CONACyT//105844/
Agradecimientos:
Este trabajo ha sido realizado gracias al apoyo del Consejo Nacional de Ciencia y Tecnología, CONACYT, a través del financiamiento del proyecto 105844.
Tipo: Artículo

References

Angelidaki, I., Ellegaard, L., Ahring, B.K., 1999. A Comprehensive Model of Anaerobic Bioconversion of Complex Substrates to Biogas. Biotechnology and Bioengineering 63(3), 363-372.

Singh, A., Nizami, A.-S., Korres, N.E., Murphy, J.D., 2011. The effect of reactor design on the sustainability of grass biomethane. Renewable and Sustainable Energy Reviews 15(3), 1567-1574.

Anjum, M., Khalid, A., Mahmood, T., Arshad, M. Anaerobic co-digestion of municipal solid organic waste with melon residues to enhance biodegradability and biogas production. Journal of Material Cycles and Waste Management. DOI:10.1007/s10163-012-0082-9. [+]
Angelidaki, I., Ellegaard, L., Ahring, B.K., 1999. A Comprehensive Model of Anaerobic Bioconversion of Complex Substrates to Biogas. Biotechnology and Bioengineering 63(3), 363-372.

Singh, A., Nizami, A.-S., Korres, N.E., Murphy, J.D., 2011. The effect of reactor design on the sustainability of grass biomethane. Renewable and Sustainable Energy Reviews 15(3), 1567-1574.

Anjum, M., Khalid, A., Mahmood, T., Arshad, M. Anaerobic co-digestion of municipal solid organic waste with melon residues to enhance biodegradability and biogas production. Journal of Material Cycles and Waste Management. DOI:10.1007/s10163-012-0082-9.

Azeiteiro C., I.F. Capela1 and A. C. Duarte, “Dynamic model simulations as a tool for evaluating the stability of an anaerobic process”. Water SA, vol. 27 No. 1, Jan. 2001, pp. 109-114.

Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S., Pavlostathis, S., Rozzi, A., Sanders, W., Siegrist, H., Vavilin, V., 2002. The IWA Anaerobic Digestion Model No1. Water Science and Technology 45(10), 63-73.

Beteau, J-F., 1992. Modelling and control of an industrial wastewater treatment bioprocess, in French, Ph.D. Thesis. INPG, France.

Beteau, J-F., Otton, V., Hihn, J.Y., Delpech, F., Cheruy, A., 2005. Modelling of anaerobic digestion in a fluidised bed with a view to control. Biochemical Engineering Journal 24, 255-267.

Chynoweth D.P., J.M. Owens and R. Legrand (2001). Renewable methane from anaerobic digestion of biomass. Renewable Energy, Vol. 22, No. 1-3, pp. 1-8.

Cougnon, P., Dochain, D., Guay, M., Perrier, M. (2011). On-line optimization of fedbatch bioreactors by adaptive extremum seeking control. Journal of Process Control, 21, 1526-1532.

Fernandez N., S. Montalvo, F. Fernandez-Polanco, L. Guerrero, I. Cortes, R. Borja, E. Sanchez, L. Travieso (2007). Real evidence about zeolite as microorganisms immobilizer in anaerobic fluidized bed reactors. Process Biochemistry, Vol. 42, pp. 721-728.Z.

Díaz-Jiménez L., Herrera-Ramírez E. (2008). Caracterización fisicoquímica de tres minerales zeolíticos naturales. 43° Congreso Mexicano de Química, Tijuana, Mexico, 27 Septiembre - 01 Octubre.

Giménez, J.B., Martí, N., Ferrer, J., Seco, A., 2012. Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: evaluation of methane losses with the effluent. Bioresource technology 118, 67-72.

Griffin M. E., McMahon K. D., Mackie R. I. Raskin L., 1998; Methanogenic Population Dynamics during Start-Up of Anaerobic Digesters Treating Municipal Solid Waste and Biosolids. Biotechnol. Bioeng. 57(3), 342-355.

Gunaseelan, V.N. (1997). Anaerobic digestion of biomass for methane production: a review. Biomass and Bioenergy, Vol. 13, No. 1, pp. 83-114.

Hess, J., Bernard, O. (2008). Design and study of a risk management criterion for an unstable anaerobic wastewater treatment process. Journal of Process Control, 18, 71-79.

Husain A., 1998. Mathematical models of the kinetics of anaerobic digestion – a selected review. Biomass Bioenergy 14(5/6), 561-571.

Lettinga G., 1995. Anaerobic digestion and wastewater treatment systems. Antonie van Leeuwenhoek 67, 3-28.

Liu Y., Xu H-L., Show K-Y., Tay J-H., 2002. Anaerobic granulation technology for wastewater treatment. World J. Microbiology & Biotechnology 18, 99-113.

Lyberatos G., Skiadas I.V., 1999. Modelling of anaerobic digestion – A review. Global Nest: the Int. J. 1(2), 63-76.

McCabe, J and W. Eckenfelder (1957). Biological Treatment of Sewage and Industrial Wastes. Two volumes. Reinhold Publishing. New York.

McCarty P. L. 1964, Fundamentals of anaerobic digestion. Public Works, 95(9), 107-112.

Milán, E. Sánchez, P. Weiland, R. Borja, A. Martín, K. Ilangovan. Influence of different natural zeolite concentrations on the anaerobic digestion of piggery waste. Bioresource Technology, Vol. 80, No. 1, 2001, pp. 37-43.

Moletta R., Verrier D., Albagnac D., 1984. Dynamic modelling of anaerobic digestión. War. Res. 20(4), 427-434.

Molino, A., Nanna, F., Ding, Y., Bikson, B., Braccio, G., 2012. Biomethane production by anaerobic digestion of organic waste. Fuel, In Press. DOI:10.1016/j.fuel.2012.07.070.

Mousa L. and C. F. Forster, “The Use of Glucose as a Growth Factor to Counteract Inhibition in Anaerobic Digestion”. Process Safety and Envireonmental Protection, vol. 77, no. B4, Jul. 1999, pp. 193-198.

Petre, E., Selisteanu, D., Sendrescu, D. (2013). Adaptive and robust-adaptive control strategies for anaerobic wastewater treatment bioprocesses. Chemical Engineering Journal, 217, 363-378.

Pind P.F., I. Angelidaki, B.K. Ahring, K. Stamatelatou and G. Lyberatos. Monitoring and Control of Anaerobic Reactors. Advances in Biochemical Engineering/Biotechnology,Vol. 82, 2003.

Rozzi A., 1984. Modelling and control of anaerobic digestion process, Trans. Inst. Matter. Chem. 6 (3), 153-159.

Saravanan V., T.R. Sreekrishnan (2006). Modelling anaerobic biofilm reactors—A review. Journal of Environmental Management, Vol. 81, pp. 1-18.

Sbarciog, M., Donoso-Bravo, A., Vande Wouwer, A. (2011). Evaluation of Steady State Multiplicity for the Anaerobic Degradation of Solid OrganicWaste. 21st European Symposium on Computer Aided Process Engineering – ESCAPE 21, Chalkidiki, Grecia.

Slotine J-J. E., Li W., 1991. Applied Nonlinear Control. Prentice-Hall Inc, NY.

Tietjen C (1975). From Biodung to biogas-Historical Review of European Experience. Energy, Agriculture, and Waste. p 274.

Weiland, P. (2010). Biogas production: current state and perspectives. Applied Microbiology and Biotechnology, 85(4), 849-860.

Zupancic, G.D., Škrjanec, I., Marinšek, L., 2012. Anaerobic co-digestion of excess brewery yeast in a granular biomass reactor to enhance the production of biomethane. Bioresource Technology 124, 328-337. DOI:10.1016/j.biortech.2012.08.064.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem