Mostrar el registro sencillo del ítem
dc.contributor.author | Hernández, F. | es_ES |
dc.contributor.author | Herrera, F. | es_ES |
dc.date.accessioned | 2020-05-25T18:45:38Z | |
dc.date.available | 2020-05-25T18:45:38Z | |
dc.date.issued | 2012-01-09 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/144306 | |
dc.description.abstract | [EN] One of the variables of more interest in the biotechnological processes is the biomass concentration. The continuous, on-line and exact determination of this parameter it is very difficult and expensive. In this work a neural network was used to estimate the biomass concentration in a Feed-batch fermentation process. In the design, the Group Method of Data Handling algorithm, GMDH, is applied with a new structure based on the employment of genetic algorithm and incorporating a feedback loop. The neural equations are restricted to order 2. The pattern was proved in the fermentation of the Pichia pastoris yeast for the production of a vaccine for recombinant methods. The stability and generalization capacity is demonstrated. The proposed method was compared with other neuronal networks attending to behavior of the Mean Square Error. (mse). | es_ES |
dc.description.abstract | [ES] En este trabajo se aborda, de manera particular, un método para el diseño del algoritmo conocido como Group Method of Data Handling, GMDH, típico con lazo recurrente. Una modificación en una de sus fases de entrenamiento permite ampliar el número de variables utilizadas en cada capa y con ello el área de regresión. Consecuentemente se puede obtener una estructura optimizada en sí misma de mayor complejidad, posibilitando la aparición de lazos recurrentes en las capas intermedias. Lo anterior permite una reducción del error en la modelación de procesos no lineales de lento comportamiento, como el crecimiento celular en biorreactores. El modelo se probó en una fermentación tipo feed-batch de la levadura Pichia pastoris. La estabilidad y capacidad de generalización es demostrada. El método propuesto es comparado con el GMDH típico recurrente y con otras estructuras de redes neuronales clásicas. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Neural networks | es_ES |
dc.subject | Recurrent | es_ES |
dc.subject | Genetic Algorithms | es_ES |
dc.subject | Modeling | es_ES |
dc.subject | Fermentation | es_ES |
dc.subject | Redes neuronales | es_ES |
dc.subject | Recurrente | es_ES |
dc.subject | Algoritmo genético | es_ES |
dc.subject | Modelación | es_ES |
dc.subject | Fermentación | es_ES |
dc.title | Identificación Inteligente de un Proceso Fermentativo Usando el Algoritmo GMDH Modificado | es_ES |
dc.title.alternative | Intelligent identification of a fermentative process using modified GMDH Algorithm | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.riai.2011.11.001 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Hernández, F.; Herrera, F. (2012). Identificación Inteligente de un Proceso Fermentativo Usando el Algoritmo GMDH Modificado. Revista Iberoamericana de Automática e Informática industrial. 9(1):3-13. https://doi.org/10.1016/j.riai.2011.11.001 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.riai.2011.11.001 | es_ES |
dc.description.upvformatpinicio | 3 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\9622 | es_ES |
dc.description.references | Bagheri, A., Nariman-Zadeh, N., Babaei, M., & Jamali, A. (2007). Polynomial Modeling of the Controlled Rack-Stacker Robot Using GMDH-type Neural Networks and Singular Value Decomposition. International Journal of Nonlinear Sciences and Numerical Simulation, 8(3). doi:10.1515/ijnsns.2007.8.3.301 | es_ES |
dc.description.references | Balanza García José, Cano I. J. M., López C. J., Alvarez C. A., Luna M. M., 1998. Estudio y Desarrollo de Sensores Software Basados en Sistemas Neuro-Difusos. Aplicación en Procesos Petroquímicos. Departamento de Ingeniería de Sistemas y Automática de la UPCT. TIC99-0446-C02-01. | es_ES |
dc.description.references | Drchal, J., 2006. Evolution of Recurrent Neural Networks., Czech Technical University, Faculty of Electrical Engineering, Prague. Ferreira, C.,;1; 2001. Gene Expression Programming in Problem Solving. Complex Systems. | es_ES |
dc.description.references | Ferreira, C., 2004. Designing Neural Networks Using Gene Expression Programming. Paper presented at the 9th Online World Conference on Soft Computing in Industrial Applications. | es_ES |
dc.description.references | Haber, R., & Unbehauen, H. (1990). Structure identification of nonlinear dynamic systems—A survey on input/output approaches. Automatica, 26(4), 651-677. doi:10.1016/0005-1098(90)90044-i | es_ES |
dc.description.references | Holland, J.H., 1975. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press,.(second edition: MIT Press, 1992). | es_ES |
dc.description.references | Ivakhnenko A. G., K.V. V., Tetko I. V., Luik A.I., Ivakhnenko G.A., Ivakhnenko N.A., 1999. Self-Organization of Neural networks with Active Neurons for Bioactivity of Chemical Compounds Forecasting by Analogues Complexing GMDH Algorithm. Paper presented at the Poster for the ICANN’99 Conference. | es_ES |
dc.description.references | Ivakhnenko A.G., 1971. Polynomial theory of complex systems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-1(1). | es_ES |
dc.description.references | Ivakhnenko A.G., D.W., Ivakhnenko G.A., 1998. Inductive Sorting-Out GMDH Algorithms with Polynomial Complexity for Active Neurons of Neural Network. from http://come.to/GMDH. | es_ES |
dc.description.references | Ivakhnenko G.A., 2001. Inductive Self-Organizing Algorithm for Maximum Electrical Load Prediction. International Centre of Informational Technologies and Systems of the National, Ac. Sci. Ukrania, Kyiv. | es_ES |
dc.description.references | Jenzsch, M., Simutis, R., & Lübbert, A. (2006). Optimization and Control of Industrial Microbial Cultivation Processes. Engineering in Life Sciences, 6(2), 117-124. doi:10.1002/elsc.200620901 | es_ES |
dc.description.references | Känsäkoski, M., Kurkinen, Marika, von Weymarn, Niklas, Niemelä, Pentti, Neubauer, Peter, Juuso, Esko, Eerikäinen, Tero, Turunen, Seppo, Aho,. Sirkka & Suhonen, Pirkko.,;1; 2006. Process analytical technology (PAT) needs and applications in the bioprocess industry. VTT Technical Research Centre of Finland, 60, 99. | es_ES |
dc.description.references | Leiva, G.A. (2006). Redes Neuronales como Herramienta para la Automatización de Sistemas Complejos. Paper presented at the EVIC2006. | es_ES |
dc.description.references | Mark S. Voss, Xin Feng., 2002. A new methodology for emergent system identification using Particle Swarm Optimization (PSO) and the Group Method of Data Handling (GMDH). Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2002. | es_ES |
dc.description.references | McNeil B., Harvey L. M., 1990. Fermentation a Practical Approach (1ra ed.). Oxford: Oxford University Press. | es_ES |
dc.description.references | Miroslav Šnorek, P.K., 2006. Inductive Modelling World Wide the State of the Art. Report of investigation, Dept. of Computer Science and Engineering, Karlovo nam. | es_ES |
dc.description.references | Mutasem Hiassat, N.M., 2004. An evolutionary method for term selection in the Group Method of Data Handling. Automatic Control & Systems Engineering, University of Sheffield, 11-14. | es_ES |
dc.description.references | Nariman-Zadeh, N., Darvizeh, A., & Ahmad-Zadeh, G. R. (2003). Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modelling and prediction of the explosive cutting process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217(6), 779-790. doi:10.1243/09544050360673161 | es_ES |
dc.description.references | Nariman-Zadeha N., Darvizeha A., Jamali A., Moeinib A., 2005. Evolutionary design of generalized polynomial neural networks for modeling and prediction of explosive forming process. Paper presented at the 13th International Scientific Conference on Achievements in Mechanical and Materials Engineering. | es_ES |
dc.description.references | Nariman-zadeha N., Jamali A., 2007. Pareto Genetic Design of GMDH-type Neural Networks for Nonlinear Systems: Department of Mechanical Engineering, University of Guilan. | es_ES |
dc.description.references | Pappas S. Sp., Ekonomou L., 2006. Comparison of Artificial Intelligence Methods for Predicting the Time Series Problem. Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, 22-24. | es_ES |
dc.description.references | Passoni, L.I., 2005. Modelos en Bioingeniería: Caracterización de Imágenes Estáticas y Dinámicas. Tesis del Doctorado en Ingeniería, Universidad Nacional de Mar del Plata. | es_ES |
dc.description.references | Ramsey, A., 1994. Assessment of the modeling abilities of Neural networks. U. of Massachusetts, US. | es_ES |
dc.description.references | Royce, P. N. (1993). A Discussion of Recent Developments in Fermentation Monitoring and Control from a Practical Perspective. Critical Reviews in Biotechnology, 13(2), 117-149. doi:10.3109/07388559309040629 | es_ES |
dc.description.references | Sánchez, P.A., 2008. Redes Neuronales Recurrentes en el Modelado de la Tasa de Cambio Colombiana. III Congreso Colombiano de Computación. Abril 23-25 Medellín. | es_ES |
dc.description.references | Solla, S.A., 1989. Learning and Generalization in Layered Neural Network: the Contiguity Problem. Neural Networks: from Models to Aplications. In L. Personnas and G. Dreyfus Paris: I.D.S.E.T. | es_ES |