Araya P., Eddie A., 1999. Coordinación de PSS y SVC para mejorar la estabilidad dinámica. Ingeniería.
Bullo, F., & Lynch, K. M. (2001). Kinematic controllability for decoupled trajectory planning in underactuated mechanical systems. IEEE Transactions on Robotics and Automation, 17(4), 402-412. doi:10.1109/70.954753
Cerdá E., 2001. Optimización Dinámica. Prentice Hall, España.
[+]
Araya P., Eddie A., 1999. Coordinación de PSS y SVC para mejorar la estabilidad dinámica. Ingeniería.
Bullo, F., & Lynch, K. M. (2001). Kinematic controllability for decoupled trajectory planning in underactuated mechanical systems. IEEE Transactions on Robotics and Automation, 17(4), 402-412. doi:10.1109/70.954753
Cerdá E., 2001. Optimización Dinámica. Prentice Hall, España.
De Luca, A., Oriolo, G., & Samson, C. (1998). Feedback control of a nonholonomic car-like robot. Robot Motion Planning and Control, 171-253. doi:10.1007/bfb0036073
Fliess M., Lévine J., Martin P., Rouchon P., 1995. Design of trajectory stabilizing feedback for driftless flat systems. Proc. Eur. Contr. Conf.
Lamiraux F., Bonnafous D., Lefebvre O., 2004. Reactive path defomation for nonholonomic mobile robots. IEEE Transactions on robotics and automation Vol. 20 No. 6.
Lamiraux, F., Sekhavat, S., & Laumond, J.-P. (1999). Motion planning and control for Hilare pulling a trailer. IEEE Transactions on Robotics and Automation, 15(4), 640-652. doi:10.1109/70.781968
Hardiansyah, Furuya S., Irisawa J., 1999. Optimal Power System Stabilization via Output Feedback Excitation Control. Journal of Nagaoka University of Technology, Japan, 21-28.
Hemami A., MehrabiM. G., Cheng R.M.H., 1992. Synthesis of an Optimal Control Law for Path Tracking in Mobile Robots. Automatica Vol. 28 No. 2, 383-387.
Jones J., Flynn A.M., 2000. Mobile Robots, Inspiration Implementation. 2da Ed., Addison-Wesley, United States of America.
Symon. K.R., 1970. Mecánica. 2da Ed., Addison-Wesley, México.
Kirk D.E., 1970. Optimal Control Theory: an introduction. Prentice Hall, United States of America.
Kwakernaak H., Sivan R., 1972. Linear Optimal Control Systems. Wiley-Interscience, New York.
Laumond, J.-P. (1993). Controllability of a multibody mobile robot. IEEE Transactions on Robotics and Automation, 9(6), 755-763. doi:10.1109/70.265919
Laumond J.P., 1998. Probabilistic path planning. Robot motion planning and control. Lectures notes in control and information sciences, pp. 255-304.
Laumond J.P., Sekhavat S., Lamiraux F., 1998. Guidelines in nonholonomic motion planning for mobile robots. Robot motion planning and control. Lectures notes in control and information science, pp. 2-53.
LaValle, S. M., & Kuffner, J. J. (2001). Randomized Kinodynamic Planning. The International Journal of Robotics Research, 20(5), 378-400. doi:10.1177/02783640122067453
Niamsup P., Phat V.N., 2008. H1 Control Problem of Linear Time-Varying Systems via Controllability approach. Applied Mathematics and Computation.
Pedrycz W., 1993. Fuzzy states and fuzzy systems. Research Setudies Press, England.
Leang Shieh, Dib, H., & McInnis, B. (1986). Linear quadratic regulators with eigenvalue placement in a vertical strip. IEEE Transactions on Automatic Control, 31(3), 241-243. doi:10.1109/tac.1986.1104233
Sordalen, O. J., & Egeland, O. (1995). Exponential stabilization of nonholonomic chained systems. IEEE Transactions on Automatic Control, 40(1), 35-49. doi:10.1109/9.362901
Svestka P., Overmars M., 1995. Coordinated motion planning for multiple carlike robots using probabilistic roadmaps. Proc. Int. Conf. Robotics and Automation, pp. 1631-1636.
[-]