- -

Interfaces y Sistemas en Rehabilitación y Compensación Funcional para la Autonomía Personal y la Terapia Clínica

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Interfaces y Sistemas en Rehabilitación y Compensación Funcional para la Autonomía Personal y la Terapia Clínica

Show full item record

Ceres, R.; Mañanas, MA.; Azorín, JM. (2011). Interfaces y Sistemas en Rehabilitación y Compensación Funcional para la Autonomía Personal y la Terapia Clínica. Revista Iberoamericana de Automática e Informática industrial. 8(2):5-15. https://doi.org/10.1016/S1697-7912(11)70021-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144528

Files in this item

Item Metadata

Title: Interfaces y Sistemas en Rehabilitación y Compensación Funcional para la Autonomía Personal y la Terapia Clínica
Secondary Title: Interfaces and Systems of Rehabilitation and Functional Compensation for Personal Autonomy and Clinical Therapy
Author: Ceres, Ramón Mañanas, M. A. Azorín, J. M.
Issued date:
[ES] La Bioingeniería constituye un área de trabajo e investigación multidisciplinar entre las ingenierías y la medicina que resulta de un interés humano, social y económico creciente. La automática en particular, en sus ...[+]

[EN] Bioengineering is a field of interdisciplinary research between engineering and medicine resulting from a growing human, social and economic interest. Automatica in particular, with its aspects of perception, modeling, ...[+]
Subjects: Electroencefalografía , Electromiografía , Interfaz persona-máquina , Rehabilitación , Ventilación mecánica , Tecnologías de apoyo , Terapia clínica , Electroencephalography , Electromyography , Human-machine interface , Rehabilitation , Mechanical ventilation , Supporting technologies , Clinical therapy
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/S1697-7912(11)70021-8
Universitat Politècnica de València
Publisher version: https://doi.org/10.1016/S1697-7912(11)70021-8
Project ID:
Los autores desean agradecer el apoyo recibido en su actividad investigadora al Ministerio de Ciencia e Innovación (proyectos DPI2008-06875-C03-03 y TEC2008-002754).
Type: Artículo


Achermann, P., & Borbély, A. A. (1998). Coherence analysis of the human sleep electroencephalogram. Neuroscience, 85(4), 1195-1208. doi:10.1016/s0306-4522(97)00692-1

Alonso, J. F., Mañanas, M. A., Romero, S., Hoyer, D., Riba, J., & Barbanoj, M. J. (2009). Drug effect on EEG connectivity assessed by linear and nonlinear couplings. Human Brain Mapping, 31(3), 487-497. doi:10.1002/hbm.20881

Allison, B. Z., & Pineda, J. A. (2003). ERPs evoked by different matrix sizes: implications for a brain computer interface (bci) system. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 110-113. doi:10.1109/tnsre.2003.814448 [+]
Achermann, P., & Borbély, A. A. (1998). Coherence analysis of the human sleep electroencephalogram. Neuroscience, 85(4), 1195-1208. doi:10.1016/s0306-4522(97)00692-1

Alonso, J. F., Mañanas, M. A., Romero, S., Hoyer, D., Riba, J., & Barbanoj, M. J. (2009). Drug effect on EEG connectivity assessed by linear and nonlinear couplings. Human Brain Mapping, 31(3), 487-497. doi:10.1002/hbm.20881

Allison, B. Z., & Pineda, J. A. (2003). ERPs evoked by different matrix sizes: implications for a brain computer interface (bci) system. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 110-113. doi:10.1109/tnsre.2003.814448

Andreasen, D. S., Allen, S. K., & Backus, D. A. (s. f.). Exoskeleton with EMG Based Active Assistance for Rehabilitation. 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005. doi:10.1109/icorr.2005.1501113

Arimura, H., Magome, T., Yamashita, Y., & Yamamoto, D. (2009). Computer-Aided Diagnosis Systems for Brain Diseases in Magnetic Resonance Images. Algorithms, 2(3), 925-952. doi:10.3390/a2030925


Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., … Flor, H. (1999). A spelling device for the paralysed. Nature, 398(6725), 297-298. doi:10.1038/18581

Barea, R., Boquete, L., Mazo, M., & López, E. (2002). Journal of Intelligent and Robotic Systems, 34(3), 279-299. doi:10.1023/a:1016359503796

Baselli, G., Porta, A., Rimoldi, O., Pagani, M., & Cerutti, S. (1997). Spectral decomposition in multichannel recordings based on multivariate parametric identification. IEEE Transactions on Biomedical Engineering, 44(11), 1092-1101. doi:10.1109/10.641336

Bennett, J. W., & Glasziou, P. P. (2003). Computerised reminders and feedback in medication management: a systematic review of randomised controlled trials. Medical Journal of Australia, 178(5), 217-222. doi:10.5694/j.1326-5377.2003.tb05166.x

Caminal, P., Vallverdu, M., Giraldo, B., Benito, S., Vazquez, G., & Voss, A. (2005). Optimized Symbolic Dynamics Approach for the Analysis of the Respiratory Pattern. IEEE Transactions on Biomedical Engineering, 52(11), 1832-1839. doi:10.1109/tbme.2005.856293

Caminal, P., Giraldo, B. F., Vallverdú, M., Benito, S., Schroeder, R., & Voss, A. (2010). Symbolic Dynamic Analysis of Relations Between Cardiac and Breathing Cycles in Patients on Weaning Trials. Annals of Biomedical Engineering, 38(8), 2542-2552. doi:10.1007/s10439-010-0027-1

Carmena, J. M., Lebedev, M. A., Crist, R. E., O’Doherty, J. E., Santucci, D. M., Dimitrov, D. F., … Nicolelis, M. A. L. (2003). Learning to Control a Brain–Machine Interface for Reaching and Grasping by Primates. PLoS Biology, 1(2), e42. doi:10.1371/journal.pbio.0000042

Ceres, R., Pons, J. L., Calderon, L., Jimenez, A. R., & Azevedo, L. (2005). A robotic vehicle for disabled children. IEEE Engineering in Medicine and Biology Magazine, 24(6), 55-63. doi:10.1109/memb.2005.1549731

Ceres, R., Pons, J. L., Calderón, L., & Moreno, J. (2008). La robótica en la discapacidad. Desarrollo de la prótesis diestra de extremidad inferior manus-hand. Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(2), 60-68. doi:10.1016/s1697-7912(08)70145-6

Cozens, J. A. (1999). Robotic assistance of an active upper limb exercise in neurologically impaired patients. IEEE Transactions on Rehabilitation Engineering, 7(2), 254-256. doi:10.1109/86.769416

Cullell, A., Moreno, J. C., Rocon, E., Forner-Cordero, A., & Pons, J. L. (2009). Biologically based design of an actuator system for a knee–ankle–foot orthosis. Mechanism and Machine Theory, 44(4), 860-872. doi:10.1016/j.mechmachtheory.2008.04.001

Dipietro, L., Ferraro, M., Palazzolo, J. J., Krebs, H. I., Volpe, B. T., & Hogan, N. (2005). Customized Interactive Robotic Treatment for Stroke: EMG-Triggered Therapy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(3), 325-334. doi:10.1109/tnsre.2005.850423

Farkas, C., Hamilton-Wright, A., Parsaei, H., & Stashuk, D. W. (2010). A Review of Clinical Quantitative Electromyography. Critical Reviews™ in Biomedical Engineering, 38(5), 467-485. doi:10.1615/critrevbiomedeng.v38.i5.30

Farry, K. A., Walker, I. D., & Baraniuk, R. G. (1996). Myoelectric teleoperation of a complex robotic hand. IEEE Transactions on Robotics and Automation, 12(5), 775-788. doi:10.1109/70.538982

Farwell, L. A., & Donchin, E. (1988). Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 70(6), 510-523. doi:10.1016/0013-4694(88)90149-6

Fazekas, G., Horvath, M., & Toth, A. (2006). A novel robot training system designed to supplement upper limb physiotherapy of patients with spastic hemiparesis. International Journal of Rehabilitation Research, 29(3), 251-254. doi:10.1097/01.mrr.0000230050.16604.d9

Ferenets, R., Lipping, T., Anier, A., Jantti, V., Melto, S., & Hovilehto, S. (2006). Comparison of Entropy and Complexity Measures for the Assessment of Depth of Sedation. IEEE Transactions on Biomedical Engineering, 53(6), 1067-1077. doi:10.1109/tbme.2006.873543

Galán, F., Nuttin, M., Lew, E., Ferrez, P. W., Vanacker, G., Philips, J., & Millán, J. del R. (2008). A brain-actuated wheelchair: Asynchronous and non-invasive Brain–computer interfaces for continuous control of robots. Clinical Neurophysiology, 119(9), 2159-2169. doi:10.1016/j.clinph.2008.06.001

Galindo, C., Gonzalez, J., & Fernandez-Madrigal, J.-A. (2006). Control Architecture for Human–Robot Integration: Application to a Robotic Wheelchair. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 36(5), 1053-1067. doi:10.1109/tsmcb.2006.874131

Goud, R., van Engen-Verheul, M., de Keizer, N. F., Bal, R., Hasman, A., Hellemans, I. M., & Peek, N. (2010). The effect of computerized decision support on barriers to guideline implementation: A qualitative study in outpatient cardiac rehabilitation. International Journal of Medical Informatics, 79(6), 430-437. doi:10.1016/j.ijmedinf.2010.03.001

Xiaorong Gao, Dingfeng Xu, Ming Cheng, & Shangkai Gao. (2003). A bci-based environmental controller for the motion-disabled. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 137-140. doi:10.1109/tnsre.2003.814449

Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10(5), 361-374. doi:10.1016/s1050-6411(00)00027-4

Hernandez, A. M., Mananas, M. A., & Costa-Castello, R. (2008). Learning Respiratory System Function in BME Studies by Means of a Virtual Laboratory: RespiLab. IEEE Transactions on Education, 51(1), 24-34. doi:10.1109/te.2007.893355

Hogan, N., Krebs, H. I., Rohrer, B., Palazzolo, J. J., Dipietro, L., Fasoli, S. E., … Volpe, B. T. (2006). Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. The Journal of Rehabilitation Research and Development, 43(5), 605. doi:10.1682/jrrd.2005.06.0103

Hutchinson, T. E., White, K. P., Martin, W. N., Reichert, K. C., & Frey, L. A. (1989). Human-computer interaction using eye-gaze input. IEEE Transactions on Systems, Man, and Cybernetics, 19(6), 1527-1534. doi:10.1109/21.44068

Iáñez, E., Azorín, J. M., Úbeda, A., Ferrández, J. M., & Fernández, E. (2010). Mental tasks-based brain–robot interface. Robotics and Autonomous Systems, 58(12), 1238-1245. doi:10.1016/j.robot.2010.08.007

Iturrate, I., Antelis, J. M., Kubler, A., & Minguez, J. (2009). A Noninvasive Brain-Actuated Wheelchair Based on a P300 Neurophysiological Protocol and Automated Navigation. IEEE Transactions on Robotics, 25(3), 614-627. doi:10.1109/tro.2009.2020347

Jezernik, S., Colombo, G., Keller, T., Frueh, H., & Morari, M. (2003). Robotic Orthosis Lokomat: A Rehabilitation and Research Tool. Neuromodulation: Technology at the Neural Interface, 6(2), 108-115. doi:10.1046/j.1525-1403.2003.03017.x

Kawamoto, K., Houlihan, C. A., Balas, E. A., & Lobach, D. F. (2005). Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ, 330(7494), 765. doi:10.1136/bmj.38398.500764.8f

Kumar, A., & Krol, G. (1992). Binocular Infrared Oculography. The Laryngoscope, 102(4), 367-378. doi:10.1288/00005537-199204000-00002

Lapatki, B. G., Oostenveld, R., Van Dijk, J. P., Jonas, I. E., Zwarts, M. J., & Stegeman, D. F. (2010). Optimal placement of bipolar surface EMG electrodes in the face based on single motor unit analysis. Psychophysiology, 47(2), 299-314. doi:10.1111/j.1469-8986.2009.00935.x

Lauer, R. T., Stackhouse, C. A., Shewokis, P. A., Smith, B. T., Tucker, C. A., & McCarthy, J. (2007). A time–frequency based electromyographic analysis technique for use in cerebral palsy. Gait & Posture, 26(3), 420-427. doi:10.1016/j.gaitpost.2006.10.015

MacIntyre, N. R. (2001). Evidence-Based Guidelines for Weaning and Discontinuing Ventilatory Support. Chest, 120(6), 375S-395S. doi:10.1378/chest.120.6_suppl.375s

McGill, S. M., & Karpowicz, A. (2009). Exercises for Spine Stabilization: Motion/Motor Patterns, Stability Progressions, and Clinical Technique. Archives of Physical Medicine and Rehabilitation, 90(1), 118-126. doi:10.1016/j.apmr.2008.06.026

Merletti, R., Holobar, A., & Farina, D. (2008). Analysis of motor units with high-density surface electromyography. Journal of Electromyography and Kinesiology, 18(6), 879-890. doi:10.1016/j.jelekin.2008.09.002

Millán, J. del R., Renkens, F., Mouriño, J., & Gerstner, W. (2004). Brain-actuated interaction. Artificial Intelligence, 159(1-2), 241-259. doi:10.1016/j.artint.2004.05.008

Nicolelis, M. A. L. (2001). Actions from thoughts. Nature, 409(6818), 403-407. doi:10.1038/35053191

Niemenlehto, P.-H., & Juhola, M. (2009). Application of a modified two-point backward difference to sequential event detection in surface electromyography. Journal of Medical Engineering & Technology, 33(5), 349-360. doi:10.1080/03091900802323613

Parker, P., Englehart, K., & Hudgins, B. (2006). Myoelectric signal processing for control of powered limb prostheses. Journal of Electromyography and Kinesiology, 16(6), 541-548. doi:10.1016/j.jelekin.2006.08.006

Pierrot, F., Dombre, E., Dégoulange, E., Urbain, L., Caron, P., Boudet, S., … Mégnien, J.-L. (1999). Hippocrate: a safe robot arm for medical applications with force feedback. Medical Image Analysis, 3(3), 285-300. doi:10.1016/s1361-8415(99)80025-5

Rees, S. E., Allerød, C., Murley, D., Zhao, Y., Smith, B. W., Kjærgaard, S., … Andreassen, S. (2006). Using physiological models and decision theory for selecting appropriate ventilator settings. Journal of Clinical Monitoring and Computing, 20(6), 421-429. doi:10.1007/s10877-006-9049-5

Riba, J., Anderer, P., Jané, F., Saletu, B., & Barbanoj, M. J. (2004). Effects of the South American Psychoactive Beverage Ayahuasca on Regional Brain Electrical Activity in Humans: A Functional Neuroimaging Study Using Low-Resolution Electromagnetic Tomography. Neuropsychobiology, 50(1), 89-101. doi:10.1159/000077946

Rocon, E., Ruíz, A. F., Belda-Lois, J. M., Moreno, J. C., Pons, J. L., Raya, R., & Ceres, R. (2008). Diseño, Desarrollo y Validación de Dispositivo Robótico para la Supresión del Temblor Patológico. Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(2), 79-92. doi:10.1016/s1697-7912(08)70147-x

Romero, S., Mañanas, M. A., & Barbanoj, M. J. (2009). Influence of ocular filtering in EEG data on the assessment of drug-induced effects on the brain. Human Brain Mapping, 30(5), 1470-1480. doi:10.1002/hbm.20614

Rosen, J., Brand, M., Fuchs, M. B., & Arcan, M. (2001). A myosignal-based powered exoskeleton system. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 31(3), 210-222. doi:10.1109/3468.925661

Ruiz, A. F., Rocon, E., & Forner-Cordero, A. (2009). Exoskeleton-based robotic platform applied in biomechanical modelling of the human upper limb. Applied Bionics and Biomechanics, 6(2), 205-216. doi:10.1080/11762320802697380

Saletu, B., Anderer, P., & Saletu-Zyhlarz, G. M. (2006). EEG Topography and Tomography (LORETA) in the Classification and Evaluation of the Pharmacodynamics of Psychotropic Drugs. Clinical EEG and Neuroscience, 37(2), 66-80. doi:10.1177/155005940603700205

Serruya, M. D., Hatsopoulos, N. G., Paninski, L., Fellows, M. R., & Donoghue, J. P. (2002). Instant neural control of a movement signal. Nature, 416(6877), 141-142. doi:10.1038/416141a

Shin, H., Kim, K. H., Song, C., Lee, I., Lee, K., Kang, J., & Kang, Y. K. (2010). Electrodiagnosis support system for localizing neural injury in an upper limb. Journal of the American Medical Informatics Association, 17(3), 345-347. doi:10.1136/jamia.2009.001594

Srinivasan, V., Eswaran, C., & Sriraam, N. (2007). Approximate Entropy-Based Epileptic EEG Detection Using Artificial Neural Networks. IEEE Transactions on Information Technology in Biomedicine, 11(3), 288-295. doi:10.1109/titb.2006.884369

Staudenmann, D., Kingma, I., Stegeman, D. F., & van Dieën, J. H. (2005). Towards optimal multi-channel EMG electrode configurations in muscle force estimation: a high density EMG study. Journal of Electromyography and Kinesiology, 15(1), 1-11. doi:10.1016/j.jelekin.2004.06.008

Teixeira, C., Teixeira, P. J. Z., de Leon, P. P., & Oliveira, E. S. (2009). Work of breathing during successful spontaneous breathing trial. Journal of Critical Care, 24(4), 508-514. doi:10.1016/j.jcrc.2008.10.013

Tobin, M. J. (2001). Advances in Mechanical Ventilation. New England Journal of Medicine, 344(26), 1986-1996. doi:10.1056/nejm200106283442606

Tehrani, F. T., & Roum, J. H. (2008). Intelligent decision support systems for mechanical ventilation. Artificial Intelligence in Medicine, 44(3), 171-182. doi:10.1016/j.artmed.2008.07.006

Velasco-Álvarez, F., Ron-Angevin, R., & Blanca-Mena, M. J. (2010). Free Virtual Navigation Using Motor Imagery Through an Asynchronous Brain–Computer Interface. Presence: Teleoperators and Virtual Environments, 19(1), 71-81. doi:10.1162/pres.19.1.71

Wickelgren, I. (2003). NEUROSCIENCE: Tapping the Mind. Science, 299(5606), 496-499. doi:10.1126/science.299.5606.496

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767-791. doi:10.1016/s1388-2457(02)00057-3

Zwarts, M. J., & Stegeman, D. F. (2003). Multichannel surface EMG: Basic aspects and clinical utility. Muscle & Nerve, 28(1), 1-17. doi:10.1002/mus.10358




This item appears in the following Collection(s)

Show full item record