- -

Interfaces y Sistemas en Rehabilitación y Compensación Funcional para la Autonomía Personal y la Terapia Clínica

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Interfaces y Sistemas en Rehabilitación y Compensación Funcional para la Autonomía Personal y la Terapia Clínica

Show simple item record

Files in this item

dc.contributor.author Ceres, Ramón es_ES
dc.contributor.author Mañanas, M. A. es_ES
dc.contributor.author Azorín, J. M. es_ES
dc.date.accessioned 2020-05-28T15:48:14Z
dc.date.available 2020-05-28T15:48:14Z
dc.date.issued 2011-04-08
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/144528
dc.description.abstract [ES] La Bioingeniería constituye un área de trabajo e investigación multidisciplinar entre las ingenierías y la medicina que resulta de un interés humano, social y económico creciente. La automática en particular, en sus aspectos de percepción, modelado, control, monitorización, actuación e interacción, entre otros, ofrece importantes conocimientos y herramientas para abordar los problemas relacionados con el diagnóstico y el seguimiento de patologías, con las necesidades funcionales especiales e igualmente con las diferentes terapias a aplicar. Este tutorial presenta aspectos relacionados con el estado del arte y últimos avances en los siguientes campos: Interfaces para la interacción y comunicación de personas con discapacidad, robótica para la rehabilitación y compensación funcional, y sistemas para la mejora de la terapia clínica. es_ES
dc.description.abstract [EN] Bioengineering is a field of interdisciplinary research between engineering and medicine resulting from a growing human, social and economic interest. Automatica in particular, with its aspects of perception, modeling, control, monitoring, action and interaction, among others, provides important insights and tools to overcome problems related to diagnosis and monitoring of diseases, to special functional needs and also with different applied treatments. This tutorial presents aspects related to the state of the art and recent advances in the following areas: Interfaces for interaction and communication of people with disabilities, rehabilitation robotics and functional compensation, and systems to improve clinical therapy. es_ES
dc.description.sponsorship Los autores desean agradecer el apoyo recibido en su actividad investigadora al Ministerio de Ciencia e Innovación (proyectos DPI2008-06875-C03-03 y TEC2008-002754). es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Electroencefalografía es_ES
dc.subject Electromiografía es_ES
dc.subject Interfaz persona-máquina es_ES
dc.subject Rehabilitación es_ES
dc.subject Ventilación mecánica es_ES
dc.subject Tecnologías de apoyo es_ES
dc.subject Terapia clínica es_ES
dc.subject Electroencephalography es_ES
dc.subject Electromyography es_ES
dc.subject Human-machine interface es_ES
dc.subject Rehabilitation es_ES
dc.subject Mechanical ventilation es_ES
dc.subject Supporting technologies es_ES
dc.subject Clinical therapy es_ES
dc.title Interfaces y Sistemas en Rehabilitación y Compensación Funcional para la Autonomía Personal y la Terapia Clínica es_ES
dc.title.alternative Interfaces and Systems of Rehabilitation and Functional Compensation for Personal Autonomy and Clinical Therapy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/S1697-7912(11)70021-8
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2008-06875-C03-03/ES/CONTROL DE SISTEMAS TELEROBOTICOS MEDIANTE INTERFACES AVANZADAS PARA PERSONAS DISCAPACITADAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2008-02754/ES/ANALISIS DE LAS INTERACCIONES DINAMICAS EN BIOSEÑALES NO INVASIVAS MULTICANAL PARA LA TERAPIA Y LA REHABILITACION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ceres, R.; Mañanas, MA.; Azorín, JM. (2011). Interfaces y Sistemas en Rehabilitación y Compensación Funcional para la Autonomía Personal y la Terapia Clínica. Revista Iberoamericana de Automática e Informática industrial. 8(2):5-15. https://doi.org/10.1016/S1697-7912(11)70021-8 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/S1697-7912(11)70021-8 es_ES
dc.description.upvformatpinicio 5 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\8576 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Achermann, P., & Borbély, A. A. (1998). Coherence analysis of the human sleep electroencephalogram. Neuroscience, 85(4), 1195-1208. doi:10.1016/s0306-4522(97)00692-1 es_ES
dc.description.references Alonso, J. F., Mañanas, M. A., Romero, S., Hoyer, D., Riba, J., & Barbanoj, M. J. (2009). Drug effect on EEG connectivity assessed by linear and nonlinear couplings. Human Brain Mapping, 31(3), 487-497. doi:10.1002/hbm.20881 es_ES
dc.description.references Allison, B. Z., & Pineda, J. A. (2003). ERPs evoked by different matrix sizes: implications for a brain computer interface (bci) system. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 110-113. doi:10.1109/tnsre.2003.814448 es_ES
dc.description.references Andreasen, D. S., Allen, S. K., & Backus, D. A. (s. f.). Exoskeleton with EMG Based Active Assistance for Rehabilitation. 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005. doi:10.1109/icorr.2005.1501113 es_ES
dc.description.references Arimura, H., Magome, T., Yamashita, Y., & Yamamoto, D. (2009). Computer-Aided Diagnosis Systems for Brain Diseases in Magnetic Resonance Images. Algorithms, 2(3), 925-952. doi:10.3390/a2030925 es_ES
dc.description.references AZORIN POVEDA, J. M., IÁÑEZ MARTINEZ, E., FERNANDEZ JOVER, E., & SABATER NAVARRO, J. M. (2010). INTERACCION OCULAR CON ROBOTS, UNA AYUDA PARA DISCAPACITADOS. DYNA INGENIERIA E INDUSTRIA, 85(3), 768-776. doi:10.6036/3738 es_ES
dc.description.references Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., … Flor, H. (1999). A spelling device for the paralysed. Nature, 398(6725), 297-298. doi:10.1038/18581 es_ES
dc.description.references Barea, R., Boquete, L., Mazo, M., & López, E. (2002). Journal of Intelligent and Robotic Systems, 34(3), 279-299. doi:10.1023/a:1016359503796 es_ES
dc.description.references Baselli, G., Porta, A., Rimoldi, O., Pagani, M., & Cerutti, S. (1997). Spectral decomposition in multichannel recordings based on multivariate parametric identification. IEEE Transactions on Biomedical Engineering, 44(11), 1092-1101. doi:10.1109/10.641336 es_ES
dc.description.references Bennett, J. W., & Glasziou, P. P. (2003). Computerised reminders and feedback in medication management: a systematic review of randomised controlled trials. Medical Journal of Australia, 178(5), 217-222. doi:10.5694/j.1326-5377.2003.tb05166.x es_ES
dc.description.references Caminal, P., Vallverdu, M., Giraldo, B., Benito, S., Vazquez, G., & Voss, A. (2005). Optimized Symbolic Dynamics Approach for the Analysis of the Respiratory Pattern. IEEE Transactions on Biomedical Engineering, 52(11), 1832-1839. doi:10.1109/tbme.2005.856293 es_ES
dc.description.references Caminal, P., Giraldo, B. F., Vallverdú, M., Benito, S., Schroeder, R., & Voss, A. (2010). Symbolic Dynamic Analysis of Relations Between Cardiac and Breathing Cycles in Patients on Weaning Trials. Annals of Biomedical Engineering, 38(8), 2542-2552. doi:10.1007/s10439-010-0027-1 es_ES
dc.description.references Carmena, J. M., Lebedev, M. A., Crist, R. E., O’Doherty, J. E., Santucci, D. M., Dimitrov, D. F., … Nicolelis, M. A. L. (2003). Learning to Control a Brain–Machine Interface for Reaching and Grasping by Primates. PLoS Biology, 1(2), e42. doi:10.1371/journal.pbio.0000042 es_ES
dc.description.references Ceres, R., Pons, J. L., Calderon, L., Jimenez, A. R., & Azevedo, L. (2005). A robotic vehicle for disabled children. IEEE Engineering in Medicine and Biology Magazine, 24(6), 55-63. doi:10.1109/memb.2005.1549731 es_ES
dc.description.references Ceres, R., Pons, J. L., Calderón, L., & Moreno, J. (2008). La robótica en la discapacidad. Desarrollo de la prótesis diestra de extremidad inferior manus-hand. Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(2), 60-68. doi:10.1016/s1697-7912(08)70145-6 es_ES
dc.description.references Cozens, J. A. (1999). Robotic assistance of an active upper limb exercise in neurologically impaired patients. IEEE Transactions on Rehabilitation Engineering, 7(2), 254-256. doi:10.1109/86.769416 es_ES
dc.description.references Cullell, A., Moreno, J. C., Rocon, E., Forner-Cordero, A., & Pons, J. L. (2009). Biologically based design of an actuator system for a knee–ankle–foot orthosis. Mechanism and Machine Theory, 44(4), 860-872. doi:10.1016/j.mechmachtheory.2008.04.001 es_ES
dc.description.references Dipietro, L., Ferraro, M., Palazzolo, J. J., Krebs, H. I., Volpe, B. T., & Hogan, N. (2005). Customized Interactive Robotic Treatment for Stroke: EMG-Triggered Therapy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(3), 325-334. doi:10.1109/tnsre.2005.850423 es_ES
dc.description.references Farkas, C., Hamilton-Wright, A., Parsaei, H., & Stashuk, D. W. (2010). A Review of Clinical Quantitative Electromyography. Critical Reviews™ in Biomedical Engineering, 38(5), 467-485. doi:10.1615/critrevbiomedeng.v38.i5.30 es_ES
dc.description.references Farry, K. A., Walker, I. D., & Baraniuk, R. G. (1996). Myoelectric teleoperation of a complex robotic hand. IEEE Transactions on Robotics and Automation, 12(5), 775-788. doi:10.1109/70.538982 es_ES
dc.description.references Farwell, L. A., & Donchin, E. (1988). Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 70(6), 510-523. doi:10.1016/0013-4694(88)90149-6 es_ES
dc.description.references Fazekas, G., Horvath, M., & Toth, A. (2006). A novel robot training system designed to supplement upper limb physiotherapy of patients with spastic hemiparesis. International Journal of Rehabilitation Research, 29(3), 251-254. doi:10.1097/01.mrr.0000230050.16604.d9 es_ES
dc.description.references Ferenets, R., Lipping, T., Anier, A., Jantti, V., Melto, S., & Hovilehto, S. (2006). Comparison of Entropy and Complexity Measures for the Assessment of Depth of Sedation. IEEE Transactions on Biomedical Engineering, 53(6), 1067-1077. doi:10.1109/tbme.2006.873543 es_ES
dc.description.references Galán, F., Nuttin, M., Lew, E., Ferrez, P. W., Vanacker, G., Philips, J., & Millán, J. del R. (2008). A brain-actuated wheelchair: Asynchronous and non-invasive Brain–computer interfaces for continuous control of robots. Clinical Neurophysiology, 119(9), 2159-2169. doi:10.1016/j.clinph.2008.06.001 es_ES
dc.description.references Galindo, C., Gonzalez, J., & Fernandez-Madrigal, J.-A. (2006). Control Architecture for Human–Robot Integration: Application to a Robotic Wheelchair. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 36(5), 1053-1067. doi:10.1109/tsmcb.2006.874131 es_ES
dc.description.references Goud, R., van Engen-Verheul, M., de Keizer, N. F., Bal, R., Hasman, A., Hellemans, I. M., & Peek, N. (2010). The effect of computerized decision support on barriers to guideline implementation: A qualitative study in outpatient cardiac rehabilitation. International Journal of Medical Informatics, 79(6), 430-437. doi:10.1016/j.ijmedinf.2010.03.001 es_ES
dc.description.references Xiaorong Gao, Dingfeng Xu, Ming Cheng, & Shangkai Gao. (2003). A bci-based environmental controller for the motion-disabled. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 137-140. doi:10.1109/tnsre.2003.814449 es_ES
dc.description.references Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10(5), 361-374. doi:10.1016/s1050-6411(00)00027-4 es_ES
dc.description.references Hernandez, A. M., Mananas, M. A., & Costa-Castello, R. (2008). Learning Respiratory System Function in BME Studies by Means of a Virtual Laboratory: RespiLab. IEEE Transactions on Education, 51(1), 24-34. doi:10.1109/te.2007.893355 es_ES
dc.description.references Hogan, N., Krebs, H. I., Rohrer, B., Palazzolo, J. J., Dipietro, L., Fasoli, S. E., … Volpe, B. T. (2006). Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. The Journal of Rehabilitation Research and Development, 43(5), 605. doi:10.1682/jrrd.2005.06.0103 es_ES
dc.description.references Hutchinson, T. E., White, K. P., Martin, W. N., Reichert, K. C., & Frey, L. A. (1989). Human-computer interaction using eye-gaze input. IEEE Transactions on Systems, Man, and Cybernetics, 19(6), 1527-1534. doi:10.1109/21.44068 es_ES
dc.description.references Iáñez, E., Azorín, J. M., Úbeda, A., Ferrández, J. M., & Fernández, E. (2010). Mental tasks-based brain–robot interface. Robotics and Autonomous Systems, 58(12), 1238-1245. doi:10.1016/j.robot.2010.08.007 es_ES
dc.description.references Iturrate, I., Antelis, J. M., Kubler, A., & Minguez, J. (2009). A Noninvasive Brain-Actuated Wheelchair Based on a P300 Neurophysiological Protocol and Automated Navigation. IEEE Transactions on Robotics, 25(3), 614-627. doi:10.1109/tro.2009.2020347 es_ES
dc.description.references Jezernik, S., Colombo, G., Keller, T., Frueh, H., & Morari, M. (2003). Robotic Orthosis Lokomat: A Rehabilitation and Research Tool. Neuromodulation: Technology at the Neural Interface, 6(2), 108-115. doi:10.1046/j.1525-1403.2003.03017.x es_ES
dc.description.references Kawamoto, K., Houlihan, C. A., Balas, E. A., & Lobach, D. F. (2005). Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ, 330(7494), 765. doi:10.1136/bmj.38398.500764.8f es_ES
dc.description.references Kumar, A., & Krol, G. (1992). Binocular Infrared Oculography. The Laryngoscope, 102(4), 367-378. doi:10.1288/00005537-199204000-00002 es_ES
dc.description.references Lapatki, B. G., Oostenveld, R., Van Dijk, J. P., Jonas, I. E., Zwarts, M. J., & Stegeman, D. F. (2010). Optimal placement of bipolar surface EMG electrodes in the face based on single motor unit analysis. Psychophysiology, 47(2), 299-314. doi:10.1111/j.1469-8986.2009.00935.x es_ES
dc.description.references Lauer, R. T., Stackhouse, C. A., Shewokis, P. A., Smith, B. T., Tucker, C. A., & McCarthy, J. (2007). A time–frequency based electromyographic analysis technique for use in cerebral palsy. Gait & Posture, 26(3), 420-427. doi:10.1016/j.gaitpost.2006.10.015 es_ES
dc.description.references MacIntyre, N. R. (2001). Evidence-Based Guidelines for Weaning and Discontinuing Ventilatory Support. Chest, 120(6), 375S-395S. doi:10.1378/chest.120.6_suppl.375s es_ES
dc.description.references McGill, S. M., & Karpowicz, A. (2009). Exercises for Spine Stabilization: Motion/Motor Patterns, Stability Progressions, and Clinical Technique. Archives of Physical Medicine and Rehabilitation, 90(1), 118-126. doi:10.1016/j.apmr.2008.06.026 es_ES
dc.description.references Merletti, R., Holobar, A., & Farina, D. (2008). Analysis of motor units with high-density surface electromyography. Journal of Electromyography and Kinesiology, 18(6), 879-890. doi:10.1016/j.jelekin.2008.09.002 es_ES
dc.description.references Millán, J. del R., Renkens, F., Mouriño, J., & Gerstner, W. (2004). Brain-actuated interaction. Artificial Intelligence, 159(1-2), 241-259. doi:10.1016/j.artint.2004.05.008 es_ES
dc.description.references Nicolelis, M. A. L. (2001). Actions from thoughts. Nature, 409(6818), 403-407. doi:10.1038/35053191 es_ES
dc.description.references Niemenlehto, P.-H., & Juhola, M. (2009). Application of a modified two-point backward difference to sequential event detection in surface electromyography. Journal of Medical Engineering & Technology, 33(5), 349-360. doi:10.1080/03091900802323613 es_ES
dc.description.references Parker, P., Englehart, K., & Hudgins, B. (2006). Myoelectric signal processing for control of powered limb prostheses. Journal of Electromyography and Kinesiology, 16(6), 541-548. doi:10.1016/j.jelekin.2006.08.006 es_ES
dc.description.references Pierrot, F., Dombre, E., Dégoulange, E., Urbain, L., Caron, P., Boudet, S., … Mégnien, J.-L. (1999). Hippocrate: a safe robot arm for medical applications with force feedback. Medical Image Analysis, 3(3), 285-300. doi:10.1016/s1361-8415(99)80025-5 es_ES
dc.description.references Rees, S. E., Allerød, C., Murley, D., Zhao, Y., Smith, B. W., Kjærgaard, S., … Andreassen, S. (2006). Using physiological models and decision theory for selecting appropriate ventilator settings. Journal of Clinical Monitoring and Computing, 20(6), 421-429. doi:10.1007/s10877-006-9049-5 es_ES
dc.description.references Riba, J., Anderer, P., Jané, F., Saletu, B., & Barbanoj, M. J. (2004). Effects of the South American Psychoactive Beverage Ayahuasca on Regional Brain Electrical Activity in Humans: A Functional Neuroimaging Study Using Low-Resolution Electromagnetic Tomography. Neuropsychobiology, 50(1), 89-101. doi:10.1159/000077946 es_ES
dc.description.references Rocon, E., Ruíz, A. F., Belda-Lois, J. M., Moreno, J. C., Pons, J. L., Raya, R., & Ceres, R. (2008). Diseño, Desarrollo y Validación de Dispositivo Robótico para la Supresión del Temblor Patológico. Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(2), 79-92. doi:10.1016/s1697-7912(08)70147-x es_ES
dc.description.references Romero, S., Mañanas, M. A., & Barbanoj, M. J. (2009). Influence of ocular filtering in EEG data on the assessment of drug-induced effects on the brain. Human Brain Mapping, 30(5), 1470-1480. doi:10.1002/hbm.20614 es_ES
dc.description.references Rosen, J., Brand, M., Fuchs, M. B., & Arcan, M. (2001). A myosignal-based powered exoskeleton system. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 31(3), 210-222. doi:10.1109/3468.925661 es_ES
dc.description.references Ruiz, A. F., Rocon, E., & Forner-Cordero, A. (2009). Exoskeleton-based robotic platform applied in biomechanical modelling of the human upper limb. Applied Bionics and Biomechanics, 6(2), 205-216. doi:10.1080/11762320802697380 es_ES
dc.description.references Saletu, B., Anderer, P., & Saletu-Zyhlarz, G. M. (2006). EEG Topography and Tomography (LORETA) in the Classification and Evaluation of the Pharmacodynamics of Psychotropic Drugs. Clinical EEG and Neuroscience, 37(2), 66-80. doi:10.1177/155005940603700205 es_ES
dc.description.references Serruya, M. D., Hatsopoulos, N. G., Paninski, L., Fellows, M. R., & Donoghue, J. P. (2002). Instant neural control of a movement signal. Nature, 416(6877), 141-142. doi:10.1038/416141a es_ES
dc.description.references Shin, H., Kim, K. H., Song, C., Lee, I., Lee, K., Kang, J., & Kang, Y. K. (2010). Electrodiagnosis support system for localizing neural injury in an upper limb. Journal of the American Medical Informatics Association, 17(3), 345-347. doi:10.1136/jamia.2009.001594 es_ES
dc.description.references Srinivasan, V., Eswaran, C., & Sriraam, N. (2007). Approximate Entropy-Based Epileptic EEG Detection Using Artificial Neural Networks. IEEE Transactions on Information Technology in Biomedicine, 11(3), 288-295. doi:10.1109/titb.2006.884369 es_ES
dc.description.references Staudenmann, D., Kingma, I., Stegeman, D. F., & van Dieën, J. H. (2005). Towards optimal multi-channel EMG electrode configurations in muscle force estimation: a high density EMG study. Journal of Electromyography and Kinesiology, 15(1), 1-11. doi:10.1016/j.jelekin.2004.06.008 es_ES
dc.description.references Teixeira, C., Teixeira, P. J. Z., de Leon, P. P., & Oliveira, E. S. (2009). Work of breathing during successful spontaneous breathing trial. Journal of Critical Care, 24(4), 508-514. doi:10.1016/j.jcrc.2008.10.013 es_ES
dc.description.references Tobin, M. J. (2001). Advances in Mechanical Ventilation. New England Journal of Medicine, 344(26), 1986-1996. doi:10.1056/nejm200106283442606 es_ES
dc.description.references Tehrani, F. T., & Roum, J. H. (2008). Intelligent decision support systems for mechanical ventilation. Artificial Intelligence in Medicine, 44(3), 171-182. doi:10.1016/j.artmed.2008.07.006 es_ES
dc.description.references Velasco-Álvarez, F., Ron-Angevin, R., & Blanca-Mena, M. J. (2010). Free Virtual Navigation Using Motor Imagery Through an Asynchronous Brain–Computer Interface. Presence: Teleoperators and Virtual Environments, 19(1), 71-81. doi:10.1162/pres.19.1.71 es_ES
dc.description.references Wickelgren, I. (2003). NEUROSCIENCE: Tapping the Mind. Science, 299(5606), 496-499. doi:10.1126/science.299.5606.496 es_ES
dc.description.references Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767-791. doi:10.1016/s1388-2457(02)00057-3 es_ES
dc.description.references Zwarts, M. J., & Stegeman, D. F. (2003). Multichannel surface EMG: Basic aspects and clinical utility. Muscle & Nerve, 28(1), 1-17. doi:10.1002/mus.10358 es_ES


This item appears in the following Collection(s)

Show simple item record