- -

Robot Biocooperativo con Modulación Háptica para Tareas de Neurorehabilitación de los Miembros Superiores

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Robot Biocooperativo con Modulación Háptica para Tareas de Neurorehabilitación de los Miembros Superiores

Mostrar el registro completo del ítem

Rodriguez-Guerrero, C.; Fraile, J.; Pérez-Turiel, J.; Rivera Farina, P. (2011). Robot Biocooperativo con Modulación Háptica para Tareas de Neurorehabilitación de los Miembros Superiores. Revista Iberoamericana de Automática e Informática industrial. 8(2):63-70. https://doi.org/10.1016/S1697-7912(11)70027-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144529

Ficheros en el ítem

Metadatos del ítem

Título: Robot Biocooperativo con Modulación Háptica para Tareas de Neurorehabilitación de los Miembros Superiores
Otro titulo: Biocooperative Robot with Haptic Modulation for Upper Limbs Neurorehabilitation Tasks
Autor: Rodriguez-Guerrero, C. Fraile, J.C. Pérez-Turiel, J. Rivera Farina, P.
Fecha difusión:
Resumen:
[ES] Los robots biocooperativos pueden mejorar las terapias tradicionales de rehabilitación proporcionando al paciente la asistencia adecuada en el instante adecuado. Distintos pacientes necesitan diferentes niveles de ...[+]


[EN] Biocooperative augmented robots can enhance rehabilitation therapies by giving the correct assistance to the patient at the correct time. Since different patients may benefit from different levels of assistance or ...[+]
Palabras clave: Robot , Biocontrol , Rehabilitation , Control biocooperativo , Psicofisiología , Rehabilitación , Háptico
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/S1697-7912(11)70027-9
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.1016/S1697-7912(11)70027-9
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2009-10658/ES/Sistema Robotizado Para La Regulacion De Asistencia En Tareas De Rehabilitacion De Miembros Superiores, Utilizando Señales Fisiologicas Del Sistema Nervioso Autonomo Del Paciente/
info:eu-repo/grantAgreement/Junta de Castilla y León//VA09
Agradecimientos:
Este trabajo ha sido realizado parcialmente gracias al apoyo del proyecto de investigación DPI2009-10658, del Ministerio de Ciencia e Innovación de España, y la ayuda VA09, de la Consejería de ...[+]
Tipo: Artículo

References

Cirstea, M. C., & Levin, M. F. (2007). Improvement of Arm Movement Patterns and Endpoint Control Depends on Type of Feedback During Practice in Stroke Survivors. Neurorehabilitation and Neural Repair, 21(5), 398-411. doi:10.1177/1545968306298414

DIETZ, V., QUINTERN, J., & BERGER, W. (1981). ELECTROPHYSIOLOGICAL STUDIES OF GAIT IN SPASTICITY AND RIGIDITY. Brain, 104(3), 431-449. doi:10.1093/brain/104.3.431

Hogan, N. (1985). Impedance Control: An Approach to Manipulation: Part I—Theory. Journal of Dynamic Systems, Measurement, and Control, 107(1), 1-7. doi:10.1115/1.3140702 [+]
Cirstea, M. C., & Levin, M. F. (2007). Improvement of Arm Movement Patterns and Endpoint Control Depends on Type of Feedback During Practice in Stroke Survivors. Neurorehabilitation and Neural Repair, 21(5), 398-411. doi:10.1177/1545968306298414

DIETZ, V., QUINTERN, J., & BERGER, W. (1981). ELECTROPHYSIOLOGICAL STUDIES OF GAIT IN SPASTICITY AND RIGIDITY. Brain, 104(3), 431-449. doi:10.1093/brain/104.3.431

Hogan, N. (1985). Impedance Control: An Approach to Manipulation: Part I—Theory. Journal of Dynamic Systems, Measurement, and Control, 107(1), 1-7. doi:10.1115/1.3140702

Kwakkel, G., van Peppen, R., Wagenaar, R. C., Wood Dauphinee, S., Richards, C., Ashburn, A., … Langhorne, P. (2004). Effects of Augmented Exercise Therapy Time After Stroke. Stroke, 35(11), 2529-2539. doi:10.1161/01.str.0000143153.76460.7d

Lance J., Feldman R., Young R. and Koella W. (1980). “Spasticity: Disordered motor control.” in Chicago Year book Medical.

Lang, P. J. (1995). The emotion probe: Studies of motivation and attention. American Psychologist, 50(5), 372-385. doi:10.1037/0003-066x.50.5.372

Lum, P. S., Burgar, C. G., Shor, P. C., Majmundar, M., & Van der Loos, M. (2002). Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Archives of Physical Medicine and Rehabilitation, 83(7), 952-959. doi:10.1053/apmr.2001.33101

Novak D, Ziherl J, Olensek A, Milavec M, Podobnik J, Mihelj M, and Munih M, “Psychophysiological responses to robotic rehabilitation tasks in stroke,” IEEE Trans. Neural Systems and Rehabilitation Engineering (in press), 2010.

Patton, J. L., Stoykov, M. E., Kovic, M., & Mussa-Ivaldi, F. A. (2005). Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Experimental Brain Research, 168(3), 368-383. doi:10.1007/s00221-005-0097-8

Platz, T. (2003). Evidenzbasierte Armrehabilitation. Der Nervenarzt, 74(10), 841-849. doi:10.1007/s00115-003-1549-7

Riener, R., Nef, T., & Colombo, G. (2005). Robot-aided neurorehabilitation of the upper extremities. Medical & Biological Engineering & Computing, 43(1), 2-10. doi:10.1007/bf02345116

Kyoto International Conference Center, Japan, June 23–26, 2009

Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161-1178. doi:10.1037/h0077714

Sanchez, R. J., Jiayin Liu, Rao, S., Shah, P., Smith, R., Rahman, T., … Reinkensmeyer, D. J. (2006). Automating Arm Movement Training Following Severe Stroke: Functional Exercises With Quantitative Feedback in a Gravity-Reduced Environment. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(3), 378-389. doi:10.1109/tnsre.2006.881553

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem