- -

An unprecedented hetero-bimetallic three-dimensional spin crossover coordination polymer based on the tetrahedral [Hg(SeCN)4]2- building block

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An unprecedented hetero-bimetallic three-dimensional spin crossover coordination polymer based on the tetrahedral [Hg(SeCN)4]2- building block

Mostrar el registro completo del ítem

Lan, W.; Valverde-Muñoz, F.; Hao, X.; Dou, Y.; Muñoz Roca, MDC.; Zhou, Z.; Liu, H.... (2019). An unprecedented hetero-bimetallic three-dimensional spin crossover coordination polymer based on the tetrahedral [Hg(SeCN)4]2- building block. Chemical Communications. 55(32):4607-4610. https://doi.org/10.1039/c9cc01291e

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144588

Ficheros en el ítem

Metadatos del ítem

Título: An unprecedented hetero-bimetallic three-dimensional spin crossover coordination polymer based on the tetrahedral [Hg(SeCN)4]2- building block
Autor: Lan, W. Valverde-Muñoz, F.J. Hao, X. Dou, Y. Muñoz Roca, María Del Carmen Zhou, Z. Liu, H. Liu, Q. Real, J.A. Zhang, D.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] Self-assembly of octahedral FeII ions, trans-1,2-bis(4-pyridyl) ethane (bpe) bridging ligands and [Hg(XCN)(4)](2-) (X = S (1), Se (2)) tetrahedral building blocks has afforded a new type of hetero-bimetallic Hg-II-Fe-II ...[+]
Palabras clave: Magnetic-Properties , X-Ray , Spectroscopic investigations , Polynuclear complexes , Hg(Scn)(4)(2-) Unit , Crystal-Structure , Transition , Pressure , Behavior , State
Derechos de uso: Cerrado
Fuente:
Chemical Communications. (issn: 1359-7345 )
DOI: 10.1039/c9cc01291e
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c9cc01291e
Código del Proyecto:
info:eu-repo/grantAgreement/NSFC//21773006/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F147/
info:eu-repo/grantAgreement/MINECO//CTQ2016-78341-P/ES/MATERIALES SPIN CROSSOVER BIESTABLES: DE LAS PROPIEDADES MACROSCOPICAS A LA ESPINTRONICA MOLECULAR/
info:eu-repo/grantAgreement/MINECO//MDM-2015-0538/ES/INSTITUTO DE CIENCIA MOLECULAR/
info:eu-repo/grantAgreement/NSFC//21671121/
Agradecimientos:
We are very thankful for the support from the National Natural Science Foundation of China (21671121 and 21773006) the Spanish Ministerio de Economiay Competitividad (MINECO) and FEDER funds (CTQ2016-78341-P and Unidad de ...[+]
Tipo: Artículo

References

König, E. (1991). Nature and dynamics of the spin-state interconversion in metal complexes. Structure and Bonding, 51-152. doi:10.1007/3-540-53499-7_2

Gütlich, P., Hauser, A., & Spiering, H. (1994). Thermal and Optical Switching of Iron(II) Complexes. Angewandte Chemie International Edition in English, 33(20), 2024-2054. doi:10.1002/anie.199420241

Real, J. A., Gaspar, A. B., Niel, V., & Muñoz, M. C. (2003). Communication between iron(II) building blocks in cooperative spin transition phenomena. Coordination Chemistry Reviews, 236(1-2), 121-141. doi:10.1016/s0010-8545(02)00220-5 [+]
König, E. (1991). Nature and dynamics of the spin-state interconversion in metal complexes. Structure and Bonding, 51-152. doi:10.1007/3-540-53499-7_2

Gütlich, P., Hauser, A., & Spiering, H. (1994). Thermal and Optical Switching of Iron(II) Complexes. Angewandte Chemie International Edition in English, 33(20), 2024-2054. doi:10.1002/anie.199420241

Real, J. A., Gaspar, A. B., Niel, V., & Muñoz, M. C. (2003). Communication between iron(II) building blocks in cooperative spin transition phenomena. Coordination Chemistry Reviews, 236(1-2), 121-141. doi:10.1016/s0010-8545(02)00220-5

Spin Crossover in Transition Metal Compounds I-III , Top. Curr. Chem., ed. P. Gütlich and H. A. Goodwin , 2004 , vol. 233–235

Real, J. A., Gaspar, A. B., & Muñoz, M. C. (2005). Thermal, pressure and light switchable spin-crossover materials. Dalton Transactions, (12), 2062. doi:10.1039/b501491c

Bousseksou, A., Molnár, G., Salmon, L., & Nicolazzi, W. (2011). Molecular spin crossover phenomenon: recent achievements and prospects. Chemical Society Reviews, 40(6), 3313. doi:10.1039/c1cs15042a

Spin-crossover materials: properties and applications , ed. M. A. Halcrow , John Wiley & Sons , 2013

See the Thematic issue edited by A. Bousseksou and entitled “Spin crossover phenomenon” appeared in C. R. Chim. , 2018 , 21 , 1055–1299, devoted to recent advances in the field

P. N. Martinho , C.Rajnak and M.Ruben , in Spin-Crossover Materials: Properties and Applications , ed. Halcrow, M. A. , Wiley , 2013 , p. 376

Senthil Kumar, K., & Ruben, M. (2017). Emerging trends in spin crossover (SCO) based functional materials and devices. Coordination Chemistry Reviews, 346, 176-205. doi:10.1016/j.ccr.2017.03.024

Molnár, G., Rat, S., Salmon, L., Nicolazzi, W., & Bousseksou, A. (2017). Spin Crossover Nanomaterials: From Fundamental Concepts to Devices. Advanced Materials, 30(5), 1703862. doi:10.1002/adma.201703862

Kitazawa, T., Gomi, Y., Takahashi, M., Takeda, M., Enomoto, M., Miyazaki, A., & Enoki, T. (1996). Spin-crossover behaviour of the coordination polymer FeII(C5H5N)2NiII(CN)4. Journal of Materials Chemistry, 6(1), 119. doi:10.1039/jm9960600119

Niel, V., Martinez-Agudo, J. M., Muñoz, M. C., Gaspar, A. B., & Real, J. A. (2001). Cooperative Spin Crossover Behavior in Cyanide-Bridged Fe(II)−M(II) Bimetallic 3D Hofmann-like Networks (M = Ni, Pd, and Pt). Inorganic Chemistry, 40(16), 3838-3839. doi:10.1021/ic010259y

Niel, V., Muñoz, M. C., Gaspar, A. B., Galet, A., Levchenko, G., & Real, J. A. (2002). Thermal-, Pressure-, and Light-Induced Spin Transition in Novel Cyanide-Bridged FeIIbAgI Bimetallic Compounds with Three-Dimensional Interpenetrating Double Structures {FeIILx[Ag(CN)2]2}⋅G. Chemistry - A European Journal, 8(11), 2446. doi:10.1002/1521-3765(20020603)8:11<2446::aid-chem2446>3.0.co;2-k

Muñoz, M. C., & Real, J. A. (2011). Thermo-, piezo-, photo- and chemo-switchable spin crossover iron(II)-metallocyanate based coordination polymers. Coordination Chemistry Reviews, 255(17-18), 2068-2093. doi:10.1016/j.ccr.2011.02.004

M. C. Muñoz and J. A.Real , in Spin-Crossover Materials: Properties and Applications , ed. M. A. Halcrow , John Wiley & Sons , Hoboken, N.J. , 2013 , p. 121

Ni, Z.-P., Liu, J.-L., Hoque, M. N., Liu, W., Li, J.-Y., Chen, Y.-C., & Tong, M.-L. (2017). Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks. Coordination Chemistry Reviews, 335, 28-43. doi:10.1016/j.ccr.2016.12.002

Galán Mascarós, J. R., Aromí, G., & Darawsheh, M. (2018). Polynuclear Fe(II) complexes: Di/trinuclear molecules and coordination networks. Comptes Rendus Chimie, 21(12), 1209-1229. doi:10.1016/j.crci.2018.07.005

Wang, X.-Q., Yu, W.-T., Xu, D., Lu, M.-K., Yuan, D.-R., & Lu, G.-T. (2000). Manganese mercury thiocyanate (MMTC) glycol monomethyl ether. Acta Crystallographica Section C Crystal Structure Communications, 56(6), 647-648. doi:10.1107/s0108270100003188

Wang, X. Q., Yu, W. T., Xu, D., Lu, M. K., & Yuan, D. R. (2001). Poly[[[tri(urea-κO)manganese(II)]-μ-thiocyanato-κ2N:S-mercury(II)]-tri-μ-tetrathiocyanato]. Acta Crystallographica Section C Crystal Structure Communications, 58(1), m36-m38. doi:10.1107/s010827010101719x

Jian, F.-F., Xiao, H.-L., & Liu, F. Q. (2006). Heterobimetallic thiocyanato-bridged coordination polymers based on [Hg(SCN)4]2−: Synthesis, crystal structure, magnetic properties and ESR studies. Journal of Solid State Chemistry, 179(12), 3695-3703. doi:10.1016/j.jssc.2006.08.001

Li, C.-S., Xue, L., Che, Y.-X., Luo, F., Zheng, J.-M., & Mak, T. C. W. (2007). Synthesis, structure and magnetic properties of two μ-oxo and thiocyanato-bridged manganese(II)–mercury(II) coordination polymers. Inorganica Chimica Acta, 360(11), 3569-3574. doi:10.1016/j.ica.2007.04.043

Kruszynski, R., Machura, B., Wolff, M., Kusz, J., Mroziński, J., & Bieńko, A. (2009). Synthesis, crystal structure, magnetic properties and EPR studies of Cu/Hg bimetallic thiocyanato-bridged coordination polymer. Inorganica Chimica Acta, 362(4), 1369-1373. doi:10.1016/j.ica.2008.05.009

Machura, B., Świtlicka, A., Mroziński, J., Kruszynski, R., & Kusz, J. (2010). Heterobimetallic Cu(II)–Hg(II) polynuclear complexes containing Hg(SCN)42− unit – Synthesis, spectroscopic investigations, X-ray studies and magnetic properties. Polyhedron, 29(8), 2023-2032. doi:10.1016/j.poly.2010.03.016

Machura, B., Palion, J., Świtlicka, A., Mroziński, J., & Kruszynski, R. (2011). Heterobimetallic Mn(II)–Hg(II) polynuclear complexes containing Hg(SCN)42− unit – Synthesis, spectroscopic investigations, X-ray studies and magnetic properties. Polyhedron, 30(15), 2499-2504. doi:10.1016/j.poly.2011.06.018

Machura, B., Świtlicka, A., Zwoliński, P., Mroziński, J., Kalińska, B., & Kruszynski, R. (2013). Novel bimetallic thiocyanate-bridged Cu(II)–Hg(II) compounds—synthesis, X-Ray studies and magnetic properties. Journal of Solid State Chemistry, 197, 218-227. doi:10.1016/j.jssc.2012.08.041

Morsali, A., & Masoomi, M. Y. (2009). Structures and properties of mercury(II) coordination polymers. Coordination Chemistry Reviews, 253(13-14), 1882-1905. doi:10.1016/j.ccr.2009.02.018

Zhang, D., Valverde-Muñoz, F. J., Bartual-Murgui, C., Piñeiro-López, L., Muñoz, M. C., & Real, J. A. (2018). {[Hg(SCN)3]2(μ-L)}2–: An Efficient Secondary Building Unit for the Synthesis of 2D Iron(II) Spin-Crossover Coordination Polymers. Inorganic Chemistry, 57(3), 1562-1571. doi:10.1021/acs.inorgchem.7b02906

Trzop, E., Zhang, D., Piñeiro-Lopez, L., Valverde-Muñoz, F. J., Carmen Muñoz, M., Palatinus, L., … Collet, E. (2016). First Step Towards a Devil’s Staircase in Spin-Crossover Materials. Angewandte Chemie International Edition, 55(30), 8675-8679. doi:10.1002/anie.201602441

Zhang, D., Trzop, E., Valverde-Muñoz, F. J., Piñeiro-López, L., Muñoz, M. C., Collet, E., & Real, J. A. (2017). Competing Phases Involving Spin-State and Ligand Structural Orderings in a Multistable Two-Dimensional Spin Crossover Coordination Polymer. Crystal Growth & Design, 17(5), 2736-2745. doi:10.1021/acs.cgd.7b00218

O. Kahn , Molecular Magnetism , VCH , New York , 1993

R. L. Carlin , Magnetochemistry , Springer Verlag , Berlin , 1986

Slichter, C. P., & Drickamer, H. G. (1972). Pressure‐Induced Electronic Changes in Compounds of Iron. The Journal of Chemical Physics, 56(5), 2142-2160. doi:10.1063/1.1677511

Sorai, M. (s. f.). Heat Capacity Studies of Spin Crossover Systems. Spin Crossover in Transition Metal Compounds III, 153-170. doi:10.1007/b95426

Decurtins, S., Gütlich, P., Köhler, C. P., Spiering, H., & Hauser, A. (1984). Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system. Chemical Physics Letters, 105(1), 1-4. doi:10.1016/0009-2614(84)80403-0

Hauser, A. (1991). Intersystem crossing in Fe(II) coordination compounds. Coordination Chemistry Reviews, 111, 275-290. doi:10.1016/0010-8545(91)84034-3

Létard, J.-F., Guionneau, P., Rabardel, L., Howard, J. A. K., Goeta, A. E., Chasseau, D., & Kahn, O. (1998). Structural, Magnetic, and Photomagnetic Studies of a Mononuclear Iron(II) Derivative Exhibiting an Exceptionally Abrupt Spin Transition. Light-Induced Thermal Hysteresis Phenomenon. Inorganic Chemistry, 37(17), 4432-4441. doi:10.1021/ic980107b

Valverde-Muñoz, F. J., Muñoz, M. C., Ferrer, S., Bartual-Murgui, C., & Real, J. A. (2018). Switchable Spin-Crossover Hofmann-Type 3D Coordination Polymers Based on Tri- and Tetratopic Ligands. Inorganic Chemistry, 57(19), 12195-12205. doi:10.1021/acs.inorgchem.8b01842

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem