Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38(4), 393-422. doi:10.1016/s1389-1286(01)00302-4
Ashrae (2005). ASHRAE Handbook - Fundamentals. Refrigerating American Society of Heating and Air-Conditioning Engineers.
ASHRAE55 (1992). Thermal environment conditions for human occupancy. American Society of Heating, Ventilating and Air Conditioning Engineers.
[+]
Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38(4), 393-422. doi:10.1016/s1389-1286(01)00302-4
Ashrae (2005). ASHRAE Handbook - Fundamentals. Refrigerating American Society of Heating and Air-Conditioning Engineers.
ASHRAE55 (1992). Thermal environment conditions for human occupancy. American Society of Heating, Ventilating and Air Conditioning Engineers.
Atthajariyakul, S., & Leephakpreeda, T. (2004). Real-time determination of optimal indoor-air condition for thermal comfort, air quality and efficient energy usage. Energy and Buildings, 36(7), 720-733. doi:10.1016/j.enbuild.2004.01.017
Atthajariyakul, S., & Leephakpreeda, T. (2005). Neural computing thermal comfort index for HVAC systems. Energy Conversion and Management, 46(15-16), 2553-2565. doi:10.1016/j.enconman.2004.12.007
Awbi, H. (2003). Ventilation of Buildings. Spon Press.
Berenguer, M.J. y F. Bernal (1994). Ntp 549: El dióxido de carbono en la evaluación de la calidad de aire interior. Instituto Nacional de Seguridad e Higiene en el Trabajo. Ministerio de Trabajo y Asuntos Sociales España.
Bourgeois, D. (2005). Detailed occupancy prediction, occupancy-sensing control and advanced behavioural modelling within whole-building energy simulation. PhD thesis. Université Laval, Quebec, Canada.
Calvino, F., La Gennusa, M., Rizzo, G., & Scaccianoce, G. (2004). The control of indoor thermal comfort conditions: introducing a fuzzy adaptive controller. Energy and Buildings, 36(2), 97-102. doi:10.1016/j.enbuild.2003.10.004
Congradac, V., & Kulic, F. (2009). HVAC system optimization with CO2 concentration control using genetic algorithms. Energy and Buildings, 41(5), 571-577. doi:10.1016/j.enbuild.2008.12.004
De Dear, R., & Schiller Brager, G. (2001). The adaptive model of thermal comfort and energy conservation in the built environment. International Journal of Biometeorology, 45(2), 100-108. doi:10.1007/s004840100093
Dounis, A. I., Santamouris, M. J., Lefas, C. C., & Argiriou, A. (1995). Design of a fuzzy set environment comfort system. Energy and Buildings, 22(1), 81-87. doi:10.1016/0378-7788(94)00902-v
Dounis, A. I., Santamouris, M. J., & Lefas, C. C. (1993). Building visual comfort control with fuzzy reasoning. Energy Conversion and Management, 34(1), 17-28. doi:10.1016/0196-8904(93)90004-t
Dounis, A. I., & Caraiscos, C. (2009). Advanced control systems engineering for energy and comfort management in a building environment—A review. Renewable and Sustainable Energy Reviews, 13(6-7), 1246-1261. doi:10.1016/j.rser.2008.09.015
Flórez, J. (1985). Temperature prediction models and their application to the control of heating systems. PhD thesis. Control Systems Centre, UMIST, UK.
Flórez, J., & Barney, G. C. (1987). Adaptive control of central heating systems: part 1: optimum start time control. Applied Mathematical Modelling, 11(2), 89-95. doi:10.1016/0307-904x(87)90151-x
Flórez, J., & Barney, G. C. (1987). Adaptive control of central heating systems: part 2: occupancy time control. Applied Mathematical Modelling, 11(2), 96-103. doi:10.1016/0307-904x(87)90152-1
Freire, R. Z., Oliveira, G. H. C., & Mendes, N. (2008). Predictive controllers for thermal comfort optimization and energy savings. Energy and Buildings, 40(7), 1353-1365. doi:10.1016/j.enbuild.2007.12.007
Gouda, M. M., Danaher, S., & Underwood, C. P. (2001). Thermal comfort based fuzzy logic controller. Building Services Engineering Research and Technology, 22(4), 237-253. doi:10.1177/014362440102200403
Guasch, J., R. Forster, F. Ramos, A. Hernández y N. A. Smith (2001). Enciclopedia de salud y seguridad en el trabajo: Iluminación. Organización Internacional del Trabajo. Ministerio de Trabajo y Asuntos Sociales.
Hernández, A. (1994a). NTP 343: Nuevos criterios para futuros estándares de ventilación de interiores. Instituto Nacional de Seguridad e Higiene en el Trabajo. Ministerio de Trabajo y Asuntos Sociales España.
Hernández, A. (1994b). NTP 742: Ventilación general de edificios. Instituto Nacional de Seguridad e Higiene en el Trabajo. Ministerio de Trabajo y Asuntos Sociales España.
Van Hoof, J. (2008). Forty years of Fanger’s model of thermal comfort: comfort for all? Indoor Air, 18(3), 182-201. doi:10.1111/j.1600-0668.2007.00516.x
IDAE (2007). Reglamento de instalaciones térmicas en los edificios. Technical Report. Ministerio de Industria, Turismo y Comercio de España.
ISO7730 (1994). Moderate thermal environment.- Determination of the PMV and PPD indices and specification of the conditions for thermal comfort. International Organisation for Standardisation.
Kalogirou, S. (2000). Artificial neural networks for the prediction of the energy consumption of a passive solar building. Energy, 25(5), 479-491. doi:10.1016/s0360-5442(99)00086-9
Kang, D. H., Mo, P. H., Choi, D. H., Song, S. Y., Yeo, M. S., & Kim, K. W. (2010). Effect of MRT variation on the energy consumption in a PMV-controlled office. Building and Environment, 45(9), 1914-1922. doi:10.1016/j.buildenv.2010.02.020
De Keyser, R., & Ionescu, C. (2010). Modelling and simulation of a lighting control system. Simulation Modelling Practice and Theory, 18(2), 165-176. doi:10.1016/j.simpat.2009.10.003
Kim, J. T., & Kim, G. (2010). Overview and new developments in optical daylighting systems for building a healthy indoor environment. Building and Environment, 45(2), 256-269. doi:10.1016/j.buildenv.2009.08.024
Oral, G. K., Yener, A. K., & Bayazit, N. T. (2004). Building envelope design with the objective to ensure thermal, visual and acoustic comfort conditions. Building and Environment, 39(3), 281-287. doi:10.1016/s0360-1323(03)00141-0
Kolokotsa, D., Pouliezos, A., Stavrakakis, G., & Lazos, C. (2009). Predictive control techniques for energy and indoor environmental quality management in buildings. Building and Environment, 44(9), 1850-1863. doi:10.1016/j.buildenv.2008.12.007
Kolokotsa, D., Tsiavos, D., Stavrakakis, G. ., Kalaitzakis, K., & Antonidakis, E. (2001). Advanced fuzzy logic controllers design and evaluation for buildings’ occupants thermal–visual comfort and indoor air quality satisfaction. Energy and Buildings, 33(6), 531-543. doi:10.1016/s0378-7788(00)00098-0
Leephakpreeda, T., Thitipatanapong, R., Grittiyachot, T., & Yungchareon, V. (2001). ScienceAsia, 27(4), 279. doi:10.2306/scienceasia1513-1874.2001.27.279
Liang, J., & Du, R. (2008). Design of intelligent comfort control system with human learning and minimum power control strategies. Energy Conversion and Management, 49(4), 517-528. doi:10.1016/j.enconman.2007.08.006
Liu, W., Lian, Z., & Zhao, B. (2007). A neural network evaluation model for individual thermal comfort. Energy and Buildings, 39(10), 1115-1122. doi:10.1016/j.enbuild.2006.12.005
Magnier, L., & Haghighat, F. (2010). Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network. Building and Environment, 45(3), 739-746. doi:10.1016/j.buildenv.2009.08.016
Menchinelli, P., & Bemporad, A. (2008). Hybrid Model Predictive Control of a Solar Air Conditioning Plant. European Journal of Control, 14(6), 501-515. doi:10.3166/ejc.14.501-515
Morosan, P.D., R. Bourdais, D. Dumur y J. Buisson (2010). Building temperature regulation using a distributed model predictive control. Energy and Buildings 42, doi:10.1016/j.enbuild.2010.03.014.
Nicol, J. F., & Humphreys, M. A. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings, 34(6), 563-572. doi:10.1016/s0378-7788(02)00006-3
of Light and Lighting, Society (2002). Code for Lighting. Butterworth-Heinemann.
Page, J., Robinson, D., Morel, N., & Scartezzini, J.-L. (2008). A generalised stochastic model for the simulation of occupant presence. Energy and Buildings, 40(2), 83-98. doi:10.1016/j.enbuild.2007.01.018
Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings, 40(3), 394-398. doi:10.1016/j.enbuild.2007.03.007
Rivera Flores, D. E. (2007). Una metodología para la identificación integrada con el diseño de controladores imc-pid. Revista Iberoamericana de Automática e Informática Industrial RIAI, 4(4), 5-18. doi:10.1016/s1697-7912(07)70240-6
Rivera, D. E., Morari, M., & Skogestad, S. (1986). Internal model control: PID controller design. Industrial & Engineering Chemistry Process Design and Development, 25(1), 252-265. doi:10.1021/i200032a041
Rodríguez, M., De Prada, C., Capraro, F., & Cristea, S. (2008). Logic Embedded NMPC of a Solar Air Conditioning Plant. European Journal of Control, 14(6), 484-500. doi:10.3166/ejc.14.484-500
Sherman, M. (1985). A simplified model of thermal comfort. Energy and Buildings, 8(1), 37-50. doi:10.1016/0378-7788(85)90013-1
Sonntag, C., Ding, H., & Engell, S. (2008). Supervisory Control of a Solar Air Conditioning Plant with Hybrid Dynamics. European Journal of Control, 14(6), 451-463. doi:10.3166/ejc.14.451-463
Lah, M. T., Zupančič, B., & Krainer, A. (2005). Fuzzy control for the illumination and temperature comfort in a test chamber. Building and Environment, 40(12), 1626-1637. doi:10.1016/j.buildenv.2004.11.008
Tse, W. L., & Chan, W. L. (2007). Real-time measurement of thermal comfort by using an open networking technology. Measurement, 40(6), 654-664. doi:10.1016/j.measurement.2006.07.005
Tse, W. L., & Chan, W. L. (2008). A distributed sensor network for measurement of human thermal comfort feelings. Sensors and Actuators A: Physical, 144(2), 394-402. doi:10.1016/j.sna.2008.02.004
UNE-EN12464-1 (2003). Iluminación. Iluminación de los lugares de trabajo. Parte 1: Lugares de trabajo en interiores. Asociación Española de Normalización y Certificación (AENOR).
UNE-EN12464-2 (2008). Iluminación. Iluminación de lugares de trabajo. Parte 2: Lugares de trabajo exteriores. Asociación Española de Normalización y Certificación (AENOR).
Wan, J. W., Yang, K., Zhang, W. J., & Zhang, J. L. (2009). A new method of determination of indoor temperature and relative humidity with consideration of human thermal comfort. Building and Environment, 44(2), 411-417. doi:10.1016/j.buildenv.2008.04.001
Wang, D., Federspiel, C. C., & Rubinstein, F. (2005). Modeling occupancy in single person offices. Energy and Buildings, 37(2), 121-126. doi:10.1016/j.enbuild.2004.06.015
Wang, S., Xu, Z., Li, H., Hong, J., & Shi, W. (2004). Investigation on intelligent building standard communication protocols and application of IT technologies. Automation in Construction, 13(5), 607-619. doi:10.1016/j.autcon.2004.04.008
Yang, I.-H., Yeo, M.-S., & Kim, K.-W. (2003). Application of artificial neural network to predict the optimal start time for heating system in building. Energy Conversion and Management, 44(17), 2791-2809. doi:10.1016/s0196-8904(03)00044-x
Yener, A. K. (1998). A method of obtaining visual comfort using fixed shading devices in rooms. Building and Environment, 34(3), 285-291. doi:10.1016/s0360-1323(98)00024-9
Zambrano, D., Bordons, C., Garcia-Gabin, W., & Camacho, E. F. (2008). Model development and validation of a solar cooling plant. International Journal of Refrigeration, 31(2), 315-327. doi:10.1016/j.ijrefrig.2007.05.007
Zambrano, D., C. Bordons y W. García-Gabin and E. Camacho (2006a). Hybrid modeling of a solar air conditioning plant.
Zambrano, D., C. Bordons y W. García-Gabin and E. Camacho (2006b). A solar cooling plant: a benchmark for hybrid systems control.
Zambrano, D., & Garcia-Gabin, W. (2008). Hierarchical Control of a Hybrid Solar Air Conditioning Plant. European Journal of Control, 14(6), 464-483. doi:10.3166/ejc.14.464-483
[-]