Matusik, J., Stodolak, E., & Bahranowski, K. (2011). Synthesis of polylactide/clay composites using structurally different kaolinites and kaolinite nanotubes. Applied Clay Science, 51(1-2), 102-109. doi:10.1016/j.clay.2010.11.010
Magalhães, N. F., Dahmouche, K., Lopes, G. K., & Andrade, C. T. (2013). Using an organically-modified montmorillonite to compatibilize a biodegradable blend. Applied Clay Science, 72, 1-8. doi:10.1016/j.clay.2012.12.008
Botana, A., Mollo, M., Eisenberg, P., & Torres Sanchez, R. M. (2010). Effect of modified montmorillonite on biodegradable PHB nanocomposites. Applied Clay Science, 47(3-4), 263-270. doi:10.1016/j.clay.2009.11.001
[+]
Matusik, J., Stodolak, E., & Bahranowski, K. (2011). Synthesis of polylactide/clay composites using structurally different kaolinites and kaolinite nanotubes. Applied Clay Science, 51(1-2), 102-109. doi:10.1016/j.clay.2010.11.010
Magalhães, N. F., Dahmouche, K., Lopes, G. K., & Andrade, C. T. (2013). Using an organically-modified montmorillonite to compatibilize a biodegradable blend. Applied Clay Science, 72, 1-8. doi:10.1016/j.clay.2012.12.008
Botana, A., Mollo, M., Eisenberg, P., & Torres Sanchez, R. M. (2010). Effect of modified montmorillonite on biodegradable PHB nanocomposites. Applied Clay Science, 47(3-4), 263-270. doi:10.1016/j.clay.2009.11.001
Khanna, S., & Srivastava, A. K. (2005). Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry, 40(2), 607-619. doi:10.1016/j.procbio.2004.01.053
Serafim, L. S., Lemos, P. C., Oliveira, R., & Reis, M. A. M. (2004). Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnology and Bioengineering, 87(2), 145-160. doi:10.1002/bit.20085
Reis, M. A. M., Serafim, L. S., Lemos, P. C., Ramos, A. M., Aguiar, F. R., & Van Loosdrecht, M. C. M. (2003). Production of polyhydroxyalkanoates by mixed microbial cultures. Bioprocess and Biosystems Engineering, 25(6), 377-385. doi:10.1007/s00449-003-0322-4
REHM, B. H. A. (2003). Polyester synthases: natural catalysts for plastics. Biochemical Journal, 376(1), 15-33. doi:10.1042/bj20031254
Cava, D., Giménez, E., Gavara, R., & Lagaron, J. M. (2006). Comparative Performance and Barrier Properties of Biodegradable Thermoplastics and Nanobiocomposites versus PET for Food Packaging Applications. Journal of Plastic Film & Sheeting, 22(4), 265-274. doi:10.1177/8756087906071354
Corre, Y.-M., Bruzaud, S., Audic, J.-L., & Grohens, Y. (2012). Morphology and functional properties of commercial polyhydroxyalkanoates: A comprehensive and comparative study. Polymer Testing, 31(2), 226-235. doi:10.1016/j.polymertesting.2011.11.002
Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polymer Letters, 8(11), 791-808. doi:10.3144/expresspolymlett.2014.82
Kunioka, M., Tamaki, A., & Doi, Y. (1989). Crystalline and thermal properties of bacterial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules, 22(2), 694-697. doi:10.1021/ma00192a031
Giménez, E., Lagarón, J. M., Cabedo, L., Gavara, R., & Saura, J. J. (2004). Study of the thermoformability of ethylene-vinyl alcohol copolymer based barrier blends of interest in food packaging applications. Journal of Applied Polymer Science, 91(6), 3851-3855. doi:10.1002/app.13584
Giménez, E., Lagarón, J. M., Maspoch, M. L., Cabedo, L., & Saura, J. J. (2004). Uniaxial tensile behavior and thermoforming characteristics of high barrier EVOH-based blends of interest in food packaging. Polymer Engineering & Science, 44(3), 598-608. doi:10.1002/pen.20054
Rasal, R. M., Janorkar, A. V., & Hirt, D. E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338-356. doi:10.1016/j.progpolymsci.2009.12.003
Cailloux, J., Santana, O. O., Franco-Urquiza, E., Bou, J. J., Carrasco, F., Gamez-Perez, J., & Maspoch, M. L. (2013). Sheets of branched poly(lactic acid) obtained by one step reactive extrusion calendering process: Melt rheology analysis. Express Polymer Letters, 7(3), 304-318. doi:10.3144/expresspolymlett.2013.27
Zembouai, I., Bruzaud, S., Kaci, M., Benhamida, A., Corre, Y.-M., Grohens, Y., & Lopez-Cuesta, J.-M. (2013). Synergistic effect of compatibilizer and cloisite 30B on the functional properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polylactide blends. Polymer Engineering & Science, 54(10), 2239-2251. doi:10.1002/pen.23776
Mofokeng, J. P., & Luyt, A. S. (2015). Dynamic mechanical properties of PLA/PHBV, PLA/PCL, PHBV/PCL blends and their nanocomposites with TiO2 as nanofiller. Thermochimica Acta, 613, 41-53. doi:10.1016/j.tca.2015.05.019
Mofokeng, J. P., & Luyt, A. S. (2015). Morphology and thermal degradation studies of melt-mixed PLA/PHBV biodegradable polymer blend nanocomposites with TiO2as filler. Journal of Applied Polymer Science, 132(25), n/a-n/a. doi:10.1002/app.42138
Zhao, H., Cui, Z., Wang, X., Turng, L.-S., & Peng, X. (2013). Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/Clay nanocomposites. Composites Part B: Engineering, 51, 79-91. doi:10.1016/j.compositesb.2013.02.034
Monfared, A., & Jalali-Arani, A. (2015). Morphology and rheology of (styrene-butadiene rubber/acrylonitrile-butadiene rubber) blends filled with organoclay: The effect of nanoparticle localization. Applied Clay Science, 108, 1-11. doi:10.1016/j.clay.2015.02.012
Huitric, J., Ville, J., Médéric, P., Moan, M., & Aubry, T. (2009). Rheological, morphological and structural properties of PE/PA/nanoclay ternary blends: Effect of clay weight fraction. Journal of Rheology, 53(5), 1101-1119. doi:10.1122/1.3153551
Bitinis, N., Fortunati, E., Verdejo, R., Armentano, I., Torre, L., Kenny, J. M., & López-Manchado, M. Á. (2014). Thermal and bio-disintegration properties of poly(lactic acid)/natural rubber/organoclay nanocomposites. Applied Clay Science, 93-94, 78-84. doi:10.1016/j.clay.2014.02.024
Bouakaz, B. S., Pillin, I., Habi, A., & Grohens, Y. (2015). Synergy between fillers in organomontmorillonite/graphene–PLA nanocomposites. Applied Clay Science, 116-117, 69-77. doi:10.1016/j.clay.2015.08.017
González-Ausejo, J., Sánchez-Safont, E., Gámez-Pérez, J., & Cabedo, L. (2015). On the use of tris(nonylphenyl) phosphite as a chain extender in melt-blended poly(hydroxybutyrate-co-hydroxyvalerate)/clay nanocomposites: Morphology, thermal stability, and mechanical properties. Journal of Applied Polymer Science, 133(2), n/a-n/a. doi:10.1002/app.42390
Neppalli, R., Causin, V., Marega, C., Modesti, M., Adhikari, R., Scholtyssek, S., … Marigo, A. (2014). The effect of different clays on the structure, morphology and degradation behavior of poly(lactic acid). Applied Clay Science, 87, 278-284. doi:10.1016/j.clay.2013.11.029
Wu, J., Zou, X., Jing, B., & Dai, W. (2014). Effect of sepiolite on the crystallization behavior of biodegradable poly(lactic acid) as an efficient nucleating agent. Polymer Engineering & Science, 55(5), 1104-1112. doi:10.1002/pen.23981
Nuzzo, A., Bilotti, E., Peijs, T., Acierno, D., & Filippone, G. (2014). Nanoparticle-induced co-continuity in immiscible polymer blends – A comparative study on bio-based PLA-PA11 blends filled with organoclay, sepiolite, and carbon nanotubes. Polymer, 55(19), 4908-4919. doi:10.1016/j.polymer.2014.07.036
M.D. Samper-Madrigal O. Fenollar F. Dominici R. Balart J.M. Kenny 50 863 872 2014
J.B. Olivato J. Marini E. Pollet F. Yamashita M.V.E. Grossmann L. Avérous 118 250 2015
H.E. Miltner N. Watzeels N.A. Gotzen A.L. Goffin E. Duquesne S. Benali B. Ruelle S. Peeterbroeck P. Dubois B. Goderis G. Van Assche H. Rahier B. Van Mele 53 1494 2012
Brigatti, M. F., Galan, E., & Theng, B. K. G. (2006). Chapter 2 Structures and Mineralogy of Clay Minerals. Handbook of Clay Science, 19-86. doi:10.1016/s1572-4352(05)01002-0
Moazeni, N., Mohamad, Z., & Dehbari, N. (2014). Study of silane treatment on poly-lactic acid(PLA)/sepiolite nanocomposite thin films. Journal of Applied Polymer Science, 132(6), n/a-n/a. doi:10.1002/app.41428
Sabzi, M., Jiang, L., Atai, M., & Ghasemi, I. (2012). PLA/sepiolite and PLA/calcium carbonate nanocomposites: A comparison study. Journal of Applied Polymer Science, 129(4), 1734-1744. doi:10.1002/app.38866
Fukushima, K., Tabuani, D., Abbate, C., Arena, M., & Ferreri, L. (2010). Effect of sepiolite on the biodegradation of poly(lactic acid) and polycaprolactone. Polymer Degradation and Stability, 95(10), 2049-2056. doi:10.1016/j.polymdegradstab.2010.07.004
Liu, M., Pu, M., & Ma, H. (2012). Preparation, structure and thermal properties of polylactide/sepiolite nanocomposites with and without organic modifiers. Composites Science and Technology, 72(13), 1508-1514. doi:10.1016/j.compscitech.2012.05.017
Nuñez, K., Rosales, C., Perera, R., Villarreal, N., & Pastor, J. M. (2011). Nanocomposites of PLA/PP blends based on sepiolite. Polymer Bulletin, 67(9), 1991-2016. doi:10.1007/s00289-011-0616-7
Nuñez, K., Rosales, C., Perera, R., Villarreal, N., & Pastor, J. M. (2011). Poly(lactic acid)/low-density polyethylene blends and its nanocomposites based on sepiolite. Polymer Engineering & Science, 52(5), 988-1004. doi:10.1002/pen.22168
Alata, H., Aoyama, T., & Inoue, Y. (2007). Effect of Aging on the Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 40(13), 4546-4551. doi:10.1021/ma070418i
Sanchez-Garcia, M. D., & Lagaron, J. M. (2010). Novel clay-based nanobiocomposites of biopolyesters with synergistic barrier to UV light, gas, and vapour. Journal of Applied Polymer Science, 118(1), 188-199. doi:10.1002/app.31986
Darder, M., López-Blanco, M., Aranda, P., Aznar, A. J., Bravo, J., & Ruiz-Hitzky, E. (2006). Microfibrous Chitosan−Sepiolite Nanocomposites. Chemistry of Materials, 18(6), 1602-1610. doi:10.1021/cm0523642
Wang, B., Wan, T., & Zeng, W. (2011). Dynamic rheology and morphology of polylactide/organic montmorillonite nanocomposites. Journal of Applied Polymer Science, 121(2), 1032-1039. doi:10.1002/app.33717
T.A. Osswald Polymer Processing Fundamentals, Hanser, Munich 1998
Grassie, N., Murray, E. J., & Holmes, P. A. (1984). The thermal degradation of poly(-(d)-β-hydroxybutyric acid): Part 3—The reaction mechanism. Polymer Degradation and Stability, 6(3), 127-134. doi:10.1016/0141-3910(84)90032-6
Kopinke, F.-D., & Mackenzie, K. (1997). Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(β-hydroxybutyric acid). Journal of Analytical and Applied Pyrolysis, 40-41, 43-53. doi:10.1016/s0165-2370(97)00022-3
Van Dommelen, J. A. ., Brekelmans, W. A. ., & Baaijens, F. P. . (2003). Micromechanical modeling of particle-toughening of polymers by locally induced anisotropy. Mechanics of Materials, 35(9), 845-863. doi:10.1016/s0167-6636(02)00307-1
Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2014). Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. Journal of Food Engineering, 127, 1-9. doi:10.1016/j.jfoodeng.2013.11.022
Galan, E. (1996). Properties and applications of palygorskite-sepiolite clays. Clay Minerals, 31(4), 443-453. doi:10.1180/claymin.1996.031.4.01
Russo, P., Cammarano, S., Bilotti, E., Peijs, T., Cerruti, P., & Acierno, D. (2013). Physical properties of poly lactic acid/clay nanocomposite films: Effect of filler content and annealing treatment. Journal of Applied Polymer Science, 131(2), n/a-n/a. doi:10.1002/app.39798
[-]