Mostrar el registro sencillo del ítem
dc.contributor.author | González-Ausejo, Jennifer | es_ES |
dc.contributor.author | Gámez-Pérez, José | es_ES |
dc.contributor.author | Balart, Rafael | es_ES |
dc.contributor.author | Lagarón, José María | es_ES |
dc.contributor.author | Cabedo, Luis | es_ES |
dc.date.accessioned | 2020-06-02T05:37:34Z | |
dc.date.available | 2020-06-02T05:37:34Z | |
dc.date.issued | 2019-01 | es_ES |
dc.identifier.issn | 0272-8397 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144824 | |
dc.description.abstract | [EN] A study concerning the incorporation of sepiolite in blends of biopolyesters (PHBV/PLA) to obtain clay/polymer nanocomposites (CPN) was performed to improve the gas barrier performance of the final materials and achieve a well dispersed morphology by means of an increase in the melt viscosity during melt blending. The latter is relevant to increase the stability of the PHBV sheets during thermoforming. The samples were analyzed using scanning electron microscopy (SEM), wide angle X-ray diffraction (WAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), tensile tests at room and high temperatures, dynamo-mechanical thermal analysis in torsion mode (DMTA), oscillatory rheometry with a parallel plate setup, Vicat softening temperature system and oxygen barrier properties. The resulting Sepiolite/PHBV/PLA nanocomposites not only improved the compatibility between the biopolymers and reduced the oxygen permeability, but also improved the mechanical properties at room temperature, showing an increase in the elongation at break, as well as increasing the rigidity and stability of the CPN at higher temperatures, which could make them very attractive for uses in thermoforming applications for food packaging. POLYM. COMPOS., 40:E156-E168, 2019. (c) 2017 Society of Plastics Engineers | es_ES |
dc.description.sponsorship | Contract grant sponsor: Ministerio de Economia y Competitividad; contract grant number: AGL2015-63855-C2-2-R; contract grant sponsor: Pla de Promocio de la Investigacio de la Universitat Jaume I; contract grant numbers: PREDOC/2012/32 and UJI-B2016-35. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Polymer Composites | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Poly(lactic Acid) | es_ES |
dc.subject | Mechanical properties | es_ES |
dc.subject | Functional properties | es_ES |
dc.subject | Thermal degradation | es_ES |
dc.subject | Barrier properties | es_ES |
dc.subject | Nanocomposites | es_ES |
dc.subject | Clay | es_ES |
dc.subject | Polyhydroxyalkanoates | es_ES |
dc.subject | Montmorillonite | es_ES |
dc.subject | Rheology | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Effect of the addition of sepiolite on the morphology and properties of melt compounded PHBV/PLA blends | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/pc.24538 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-2-R/ES/DESARROLLO Y CARACTERIZACION DE UN MULTICAPA BIODEGRADABLE DE ALTA BARRERA CON PROPIEDADES ACTIVAS Y BIOACTIVAS PARA ENVASADO ALIMENTARIO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//PREDOC%2F2012%2F32/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//UJI-B2016-35/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | González-Ausejo, J.; Gámez-Pérez, J.; Balart, R.; Lagarón, JM.; Cabedo, L. (2019). Effect of the addition of sepiolite on the morphology and properties of melt compounded PHBV/PLA blends. Polymer Composites. 40(S1):E156-E168. https://doi.org/10.1002/pc.24538 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/pc.24538 | es_ES |
dc.description.upvformatpinicio | E156 | es_ES |
dc.description.upvformatpfin | E168 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 40 | es_ES |
dc.description.issue | S1 | es_ES |
dc.relation.pasarela | S\377017 | es_ES |
dc.contributor.funder | Universitat Jaume I | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Matusik, J., Stodolak, E., & Bahranowski, K. (2011). Synthesis of polylactide/clay composites using structurally different kaolinites and kaolinite nanotubes. Applied Clay Science, 51(1-2), 102-109. doi:10.1016/j.clay.2010.11.010 | es_ES |
dc.description.references | Magalhães, N. F., Dahmouche, K., Lopes, G. K., & Andrade, C. T. (2013). Using an organically-modified montmorillonite to compatibilize a biodegradable blend. Applied Clay Science, 72, 1-8. doi:10.1016/j.clay.2012.12.008 | es_ES |
dc.description.references | Botana, A., Mollo, M., Eisenberg, P., & Torres Sanchez, R. M. (2010). Effect of modified montmorillonite on biodegradable PHB nanocomposites. Applied Clay Science, 47(3-4), 263-270. doi:10.1016/j.clay.2009.11.001 | es_ES |
dc.description.references | Khanna, S., & Srivastava, A. K. (2005). Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry, 40(2), 607-619. doi:10.1016/j.procbio.2004.01.053 | es_ES |
dc.description.references | Serafim, L. S., Lemos, P. C., Oliveira, R., & Reis, M. A. M. (2004). Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnology and Bioengineering, 87(2), 145-160. doi:10.1002/bit.20085 | es_ES |
dc.description.references | Reis, M. A. M., Serafim, L. S., Lemos, P. C., Ramos, A. M., Aguiar, F. R., & Van Loosdrecht, M. C. M. (2003). Production of polyhydroxyalkanoates by mixed microbial cultures. Bioprocess and Biosystems Engineering, 25(6), 377-385. doi:10.1007/s00449-003-0322-4 | es_ES |
dc.description.references | REHM, B. H. A. (2003). Polyester synthases: natural catalysts for plastics. Biochemical Journal, 376(1), 15-33. doi:10.1042/bj20031254 | es_ES |
dc.description.references | Cava, D., Giménez, E., Gavara, R., & Lagaron, J. M. (2006). Comparative Performance and Barrier Properties of Biodegradable Thermoplastics and Nanobiocomposites versus PET for Food Packaging Applications. Journal of Plastic Film & Sheeting, 22(4), 265-274. doi:10.1177/8756087906071354 | es_ES |
dc.description.references | Corre, Y.-M., Bruzaud, S., Audic, J.-L., & Grohens, Y. (2012). Morphology and functional properties of commercial polyhydroxyalkanoates: A comprehensive and comparative study. Polymer Testing, 31(2), 226-235. doi:10.1016/j.polymertesting.2011.11.002 | es_ES |
dc.description.references | Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polymer Letters, 8(11), 791-808. doi:10.3144/expresspolymlett.2014.82 | es_ES |
dc.description.references | Kunioka, M., Tamaki, A., & Doi, Y. (1989). Crystalline and thermal properties of bacterial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules, 22(2), 694-697. doi:10.1021/ma00192a031 | es_ES |
dc.description.references | Giménez, E., Lagarón, J. M., Cabedo, L., Gavara, R., & Saura, J. J. (2004). Study of the thermoformability of ethylene-vinyl alcohol copolymer based barrier blends of interest in food packaging applications. Journal of Applied Polymer Science, 91(6), 3851-3855. doi:10.1002/app.13584 | es_ES |
dc.description.references | Giménez, E., Lagarón, J. M., Maspoch, M. L., Cabedo, L., & Saura, J. J. (2004). Uniaxial tensile behavior and thermoforming characteristics of high barrier EVOH-based blends of interest in food packaging. Polymer Engineering & Science, 44(3), 598-608. doi:10.1002/pen.20054 | es_ES |
dc.description.references | Rasal, R. M., Janorkar, A. V., & Hirt, D. E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338-356. doi:10.1016/j.progpolymsci.2009.12.003 | es_ES |
dc.description.references | Cailloux, J., Santana, O. O., Franco-Urquiza, E., Bou, J. J., Carrasco, F., Gamez-Perez, J., & Maspoch, M. L. (2013). Sheets of branched poly(lactic acid) obtained by one step reactive extrusion calendering process: Melt rheology analysis. Express Polymer Letters, 7(3), 304-318. doi:10.3144/expresspolymlett.2013.27 | es_ES |
dc.description.references | Zembouai, I., Bruzaud, S., Kaci, M., Benhamida, A., Corre, Y.-M., Grohens, Y., & Lopez-Cuesta, J.-M. (2013). Synergistic effect of compatibilizer and cloisite 30B on the functional properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polylactide blends. Polymer Engineering & Science, 54(10), 2239-2251. doi:10.1002/pen.23776 | es_ES |
dc.description.references | Mofokeng, J. P., & Luyt, A. S. (2015). Dynamic mechanical properties of PLA/PHBV, PLA/PCL, PHBV/PCL blends and their nanocomposites with TiO2 as nanofiller. Thermochimica Acta, 613, 41-53. doi:10.1016/j.tca.2015.05.019 | es_ES |
dc.description.references | Mofokeng, J. P., & Luyt, A. S. (2015). Morphology and thermal degradation studies of melt-mixed PLA/PHBV biodegradable polymer blend nanocomposites with TiO2as filler. Journal of Applied Polymer Science, 132(25), n/a-n/a. doi:10.1002/app.42138 | es_ES |
dc.description.references | Zhao, H., Cui, Z., Wang, X., Turng, L.-S., & Peng, X. (2013). Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/Clay nanocomposites. Composites Part B: Engineering, 51, 79-91. doi:10.1016/j.compositesb.2013.02.034 | es_ES |
dc.description.references | Monfared, A., & Jalali-Arani, A. (2015). Morphology and rheology of (styrene-butadiene rubber/acrylonitrile-butadiene rubber) blends filled with organoclay: The effect of nanoparticle localization. Applied Clay Science, 108, 1-11. doi:10.1016/j.clay.2015.02.012 | es_ES |
dc.description.references | Huitric, J., Ville, J., Médéric, P., Moan, M., & Aubry, T. (2009). Rheological, morphological and structural properties of PE/PA/nanoclay ternary blends: Effect of clay weight fraction. Journal of Rheology, 53(5), 1101-1119. doi:10.1122/1.3153551 | es_ES |
dc.description.references | Bitinis, N., Fortunati, E., Verdejo, R., Armentano, I., Torre, L., Kenny, J. M., & López-Manchado, M. Á. (2014). Thermal and bio-disintegration properties of poly(lactic acid)/natural rubber/organoclay nanocomposites. Applied Clay Science, 93-94, 78-84. doi:10.1016/j.clay.2014.02.024 | es_ES |
dc.description.references | Bouakaz, B. S., Pillin, I., Habi, A., & Grohens, Y. (2015). Synergy between fillers in organomontmorillonite/graphene–PLA nanocomposites. Applied Clay Science, 116-117, 69-77. doi:10.1016/j.clay.2015.08.017 | es_ES |
dc.description.references | González-Ausejo, J., Sánchez-Safont, E., Gámez-Pérez, J., & Cabedo, L. (2015). On the use of tris(nonylphenyl) phosphite as a chain extender in melt-blended poly(hydroxybutyrate-co-hydroxyvalerate)/clay nanocomposites: Morphology, thermal stability, and mechanical properties. Journal of Applied Polymer Science, 133(2), n/a-n/a. doi:10.1002/app.42390 | es_ES |
dc.description.references | Neppalli, R., Causin, V., Marega, C., Modesti, M., Adhikari, R., Scholtyssek, S., … Marigo, A. (2014). The effect of different clays on the structure, morphology and degradation behavior of poly(lactic acid). Applied Clay Science, 87, 278-284. doi:10.1016/j.clay.2013.11.029 | es_ES |
dc.description.references | Wu, J., Zou, X., Jing, B., & Dai, W. (2014). Effect of sepiolite on the crystallization behavior of biodegradable poly(lactic acid) as an efficient nucleating agent. Polymer Engineering & Science, 55(5), 1104-1112. doi:10.1002/pen.23981 | es_ES |
dc.description.references | Nuzzo, A., Bilotti, E., Peijs, T., Acierno, D., & Filippone, G. (2014). Nanoparticle-induced co-continuity in immiscible polymer blends – A comparative study on bio-based PLA-PA11 blends filled with organoclay, sepiolite, and carbon nanotubes. Polymer, 55(19), 4908-4919. doi:10.1016/j.polymer.2014.07.036 | es_ES |
dc.description.references | M.D. Samper-Madrigal O. Fenollar F. Dominici R. Balart J.M. Kenny 50 863 872 2014 | es_ES |
dc.description.references | J.B. Olivato J. Marini E. Pollet F. Yamashita M.V.E. Grossmann L. Avérous 118 250 2015 | es_ES |
dc.description.references | H.E. Miltner N. Watzeels N.A. Gotzen A.L. Goffin E. Duquesne S. Benali B. Ruelle S. Peeterbroeck P. Dubois B. Goderis G. Van Assche H. Rahier B. Van Mele 53 1494 2012 | es_ES |
dc.description.references | Brigatti, M. F., Galan, E., & Theng, B. K. G. (2006). Chapter 2 Structures and Mineralogy of Clay Minerals. Handbook of Clay Science, 19-86. doi:10.1016/s1572-4352(05)01002-0 | es_ES |
dc.description.references | Moazeni, N., Mohamad, Z., & Dehbari, N. (2014). Study of silane treatment on poly-lactic acid(PLA)/sepiolite nanocomposite thin films. Journal of Applied Polymer Science, 132(6), n/a-n/a. doi:10.1002/app.41428 | es_ES |
dc.description.references | Sabzi, M., Jiang, L., Atai, M., & Ghasemi, I. (2012). PLA/sepiolite and PLA/calcium carbonate nanocomposites: A comparison study. Journal of Applied Polymer Science, 129(4), 1734-1744. doi:10.1002/app.38866 | es_ES |
dc.description.references | Fukushima, K., Tabuani, D., Abbate, C., Arena, M., & Ferreri, L. (2010). Effect of sepiolite on the biodegradation of poly(lactic acid) and polycaprolactone. Polymer Degradation and Stability, 95(10), 2049-2056. doi:10.1016/j.polymdegradstab.2010.07.004 | es_ES |
dc.description.references | Liu, M., Pu, M., & Ma, H. (2012). Preparation, structure and thermal properties of polylactide/sepiolite nanocomposites with and without organic modifiers. Composites Science and Technology, 72(13), 1508-1514. doi:10.1016/j.compscitech.2012.05.017 | es_ES |
dc.description.references | Nuñez, K., Rosales, C., Perera, R., Villarreal, N., & Pastor, J. M. (2011). Nanocomposites of PLA/PP blends based on sepiolite. Polymer Bulletin, 67(9), 1991-2016. doi:10.1007/s00289-011-0616-7 | es_ES |
dc.description.references | Nuñez, K., Rosales, C., Perera, R., Villarreal, N., & Pastor, J. M. (2011). Poly(lactic acid)/low-density polyethylene blends and its nanocomposites based on sepiolite. Polymer Engineering & Science, 52(5), 988-1004. doi:10.1002/pen.22168 | es_ES |
dc.description.references | Alata, H., Aoyama, T., & Inoue, Y. (2007). Effect of Aging on the Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 40(13), 4546-4551. doi:10.1021/ma070418i | es_ES |
dc.description.references | Sanchez-Garcia, M. D., & Lagaron, J. M. (2010). Novel clay-based nanobiocomposites of biopolyesters with synergistic barrier to UV light, gas, and vapour. Journal of Applied Polymer Science, 118(1), 188-199. doi:10.1002/app.31986 | es_ES |
dc.description.references | Darder, M., López-Blanco, M., Aranda, P., Aznar, A. J., Bravo, J., & Ruiz-Hitzky, E. (2006). Microfibrous Chitosan−Sepiolite Nanocomposites. Chemistry of Materials, 18(6), 1602-1610. doi:10.1021/cm0523642 | es_ES |
dc.description.references | Wang, B., Wan, T., & Zeng, W. (2011). Dynamic rheology and morphology of polylactide/organic montmorillonite nanocomposites. Journal of Applied Polymer Science, 121(2), 1032-1039. doi:10.1002/app.33717 | es_ES |
dc.description.references | T.A. Osswald Polymer Processing Fundamentals, Hanser, Munich 1998 | es_ES |
dc.description.references | Grassie, N., Murray, E. J., & Holmes, P. A. (1984). The thermal degradation of poly(-(d)-β-hydroxybutyric acid): Part 3—The reaction mechanism. Polymer Degradation and Stability, 6(3), 127-134. doi:10.1016/0141-3910(84)90032-6 | es_ES |
dc.description.references | Kopinke, F.-D., & Mackenzie, K. (1997). Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(β-hydroxybutyric acid). Journal of Analytical and Applied Pyrolysis, 40-41, 43-53. doi:10.1016/s0165-2370(97)00022-3 | es_ES |
dc.description.references | Van Dommelen, J. A. ., Brekelmans, W. A. ., & Baaijens, F. P. . (2003). Micromechanical modeling of particle-toughening of polymers by locally induced anisotropy. Mechanics of Materials, 35(9), 845-863. doi:10.1016/s0167-6636(02)00307-1 | es_ES |
dc.description.references | Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2014). Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. Journal of Food Engineering, 127, 1-9. doi:10.1016/j.jfoodeng.2013.11.022 | es_ES |
dc.description.references | Galan, E. (1996). Properties and applications of palygorskite-sepiolite clays. Clay Minerals, 31(4), 443-453. doi:10.1180/claymin.1996.031.4.01 | es_ES |
dc.description.references | Russo, P., Cammarano, S., Bilotti, E., Peijs, T., Cerruti, P., & Acierno, D. (2013). Physical properties of poly lactic acid/clay nanocomposite films: Effect of filler content and annealing treatment. Journal of Applied Polymer Science, 131(2), n/a-n/a. doi:10.1002/app.39798 | es_ES |