- -

Effect of the addition of sepiolite on the morphology and properties of melt compounded PHBV/PLA blends

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of the addition of sepiolite on the morphology and properties of melt compounded PHBV/PLA blends

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González-Ausejo, Jennifer es_ES
dc.contributor.author Gámez-Pérez, José es_ES
dc.contributor.author Balart, Rafael es_ES
dc.contributor.author Lagarón, José María es_ES
dc.contributor.author Cabedo, Luis es_ES
dc.date.accessioned 2020-06-02T05:37:34Z
dc.date.available 2020-06-02T05:37:34Z
dc.date.issued 2019-01 es_ES
dc.identifier.issn 0272-8397 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144824
dc.description.abstract [EN] A study concerning the incorporation of sepiolite in blends of biopolyesters (PHBV/PLA) to obtain clay/polymer nanocomposites (CPN) was performed to improve the gas barrier performance of the final materials and achieve a well dispersed morphology by means of an increase in the melt viscosity during melt blending. The latter is relevant to increase the stability of the PHBV sheets during thermoforming. The samples were analyzed using scanning electron microscopy (SEM), wide angle X-ray diffraction (WAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), tensile tests at room and high temperatures, dynamo-mechanical thermal analysis in torsion mode (DMTA), oscillatory rheometry with a parallel plate setup, Vicat softening temperature system and oxygen barrier properties. The resulting Sepiolite/PHBV/PLA nanocomposites not only improved the compatibility between the biopolymers and reduced the oxygen permeability, but also improved the mechanical properties at room temperature, showing an increase in the elongation at break, as well as increasing the rigidity and stability of the CPN at higher temperatures, which could make them very attractive for uses in thermoforming applications for food packaging. POLYM. COMPOS., 40:E156-E168, 2019. (c) 2017 Society of Plastics Engineers es_ES
dc.description.sponsorship Contract grant sponsor: Ministerio de Economia y Competitividad; contract grant number: AGL2015-63855-C2-2-R; contract grant sponsor: Pla de Promocio de la Investigacio de la Universitat Jaume I; contract grant numbers: PREDOC/2012/32 and UJI-B2016-35. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Polymer Composites es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Poly(lactic Acid) es_ES
dc.subject Mechanical properties es_ES
dc.subject Functional properties es_ES
dc.subject Thermal degradation es_ES
dc.subject Barrier properties es_ES
dc.subject Nanocomposites es_ES
dc.subject Clay es_ES
dc.subject Polyhydroxyalkanoates es_ES
dc.subject Montmorillonite es_ES
dc.subject Rheology es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Effect of the addition of sepiolite on the morphology and properties of melt compounded PHBV/PLA blends es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/pc.24538 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-2-R/ES/DESARROLLO Y CARACTERIZACION DE UN MULTICAPA BIODEGRADABLE DE ALTA BARRERA CON PROPIEDADES ACTIVAS Y BIOACTIVAS PARA ENVASADO ALIMENTARIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//PREDOC%2F2012%2F32/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//UJI-B2016-35/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation González-Ausejo, J.; Gámez-Pérez, J.; Balart, R.; Lagarón, JM.; Cabedo, L. (2019). Effect of the addition of sepiolite on the morphology and properties of melt compounded PHBV/PLA blends. Polymer Composites. 40(S1):E156-E168. https://doi.org/10.1002/pc.24538 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/pc.24538 es_ES
dc.description.upvformatpinicio E156 es_ES
dc.description.upvformatpfin E168 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 40 es_ES
dc.description.issue S1 es_ES
dc.relation.pasarela S\377017 es_ES
dc.contributor.funder Universitat Jaume I es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Matusik, J., Stodolak, E., & Bahranowski, K. (2011). Synthesis of polylactide/clay composites using structurally different kaolinites and kaolinite nanotubes. Applied Clay Science, 51(1-2), 102-109. doi:10.1016/j.clay.2010.11.010 es_ES
dc.description.references Magalhães, N. F., Dahmouche, K., Lopes, G. K., & Andrade, C. T. (2013). Using an organically-modified montmorillonite to compatibilize a biodegradable blend. Applied Clay Science, 72, 1-8. doi:10.1016/j.clay.2012.12.008 es_ES
dc.description.references Botana, A., Mollo, M., Eisenberg, P., & Torres Sanchez, R. M. (2010). Effect of modified montmorillonite on biodegradable PHB nanocomposites. Applied Clay Science, 47(3-4), 263-270. doi:10.1016/j.clay.2009.11.001 es_ES
dc.description.references Khanna, S., & Srivastava, A. K. (2005). Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry, 40(2), 607-619. doi:10.1016/j.procbio.2004.01.053 es_ES
dc.description.references Serafim, L. S., Lemos, P. C., Oliveira, R., & Reis, M. A. M. (2004). Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnology and Bioengineering, 87(2), 145-160. doi:10.1002/bit.20085 es_ES
dc.description.references Reis, M. A. M., Serafim, L. S., Lemos, P. C., Ramos, A. M., Aguiar, F. R., & Van Loosdrecht, M. C. M. (2003). Production of polyhydroxyalkanoates by mixed microbial cultures. Bioprocess and Biosystems Engineering, 25(6), 377-385. doi:10.1007/s00449-003-0322-4 es_ES
dc.description.references REHM, B. H. A. (2003). Polyester synthases: natural catalysts for plastics. Biochemical Journal, 376(1), 15-33. doi:10.1042/bj20031254 es_ES
dc.description.references Cava, D., Giménez, E., Gavara, R., & Lagaron, J. M. (2006). Comparative Performance and Barrier Properties of Biodegradable Thermoplastics and Nanobiocomposites versus PET for Food Packaging Applications. Journal of Plastic Film & Sheeting, 22(4), 265-274. doi:10.1177/8756087906071354 es_ES
dc.description.references Corre, Y.-M., Bruzaud, S., Audic, J.-L., & Grohens, Y. (2012). Morphology and functional properties of commercial polyhydroxyalkanoates: A comprehensive and comparative study. Polymer Testing, 31(2), 226-235. doi:10.1016/j.polymertesting.2011.11.002 es_ES
dc.description.references Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polymer Letters, 8(11), 791-808. doi:10.3144/expresspolymlett.2014.82 es_ES
dc.description.references Kunioka, M., Tamaki, A., & Doi, Y. (1989). Crystalline and thermal properties of bacterial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules, 22(2), 694-697. doi:10.1021/ma00192a031 es_ES
dc.description.references Giménez, E., Lagarón, J. M., Cabedo, L., Gavara, R., & Saura, J. J. (2004). Study of the thermoformability of ethylene-vinyl alcohol copolymer based barrier blends of interest in food packaging applications. Journal of Applied Polymer Science, 91(6), 3851-3855. doi:10.1002/app.13584 es_ES
dc.description.references Giménez, E., Lagarón, J. M., Maspoch, M. L., Cabedo, L., & Saura, J. J. (2004). Uniaxial tensile behavior and thermoforming characteristics of high barrier EVOH-based blends of interest in food packaging. Polymer Engineering & Science, 44(3), 598-608. doi:10.1002/pen.20054 es_ES
dc.description.references Rasal, R. M., Janorkar, A. V., & Hirt, D. E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338-356. doi:10.1016/j.progpolymsci.2009.12.003 es_ES
dc.description.references Cailloux, J., Santana, O. O., Franco-Urquiza, E., Bou, J. J., Carrasco, F., Gamez-Perez, J., & Maspoch, M. L. (2013). Sheets of branched poly(lactic acid) obtained by one step reactive extrusion calendering process: Melt rheology analysis. Express Polymer Letters, 7(3), 304-318. doi:10.3144/expresspolymlett.2013.27 es_ES
dc.description.references Zembouai, I., Bruzaud, S., Kaci, M., Benhamida, A., Corre, Y.-M., Grohens, Y., & Lopez-Cuesta, J.-M. (2013). Synergistic effect of compatibilizer and cloisite 30B on the functional properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polylactide blends. Polymer Engineering & Science, 54(10), 2239-2251. doi:10.1002/pen.23776 es_ES
dc.description.references Mofokeng, J. P., & Luyt, A. S. (2015). Dynamic mechanical properties of PLA/PHBV, PLA/PCL, PHBV/PCL blends and their nanocomposites with TiO2 as nanofiller. Thermochimica Acta, 613, 41-53. doi:10.1016/j.tca.2015.05.019 es_ES
dc.description.references Mofokeng, J. P., & Luyt, A. S. (2015). Morphology and thermal degradation studies of melt-mixed PLA/PHBV biodegradable polymer blend nanocomposites with TiO2as filler. Journal of Applied Polymer Science, 132(25), n/a-n/a. doi:10.1002/app.42138 es_ES
dc.description.references Zhao, H., Cui, Z., Wang, X., Turng, L.-S., & Peng, X. (2013). Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/Clay nanocomposites. Composites Part B: Engineering, 51, 79-91. doi:10.1016/j.compositesb.2013.02.034 es_ES
dc.description.references Monfared, A., & Jalali-Arani, A. (2015). Morphology and rheology of (styrene-butadiene rubber/acrylonitrile-butadiene rubber) blends filled with organoclay: The effect of nanoparticle localization. Applied Clay Science, 108, 1-11. doi:10.1016/j.clay.2015.02.012 es_ES
dc.description.references Huitric, J., Ville, J., Médéric, P., Moan, M., & Aubry, T. (2009). Rheological, morphological and structural properties of PE/PA/nanoclay ternary blends: Effect of clay weight fraction. Journal of Rheology, 53(5), 1101-1119. doi:10.1122/1.3153551 es_ES
dc.description.references Bitinis, N., Fortunati, E., Verdejo, R., Armentano, I., Torre, L., Kenny, J. M., & López-Manchado, M. Á. (2014). Thermal and bio-disintegration properties of poly(lactic acid)/natural rubber/organoclay nanocomposites. Applied Clay Science, 93-94, 78-84. doi:10.1016/j.clay.2014.02.024 es_ES
dc.description.references Bouakaz, B. S., Pillin, I., Habi, A., & Grohens, Y. (2015). Synergy between fillers in organomontmorillonite/graphene–PLA nanocomposites. Applied Clay Science, 116-117, 69-77. doi:10.1016/j.clay.2015.08.017 es_ES
dc.description.references González-Ausejo, J., Sánchez-Safont, E., Gámez-Pérez, J., & Cabedo, L. (2015). On the use of tris(nonylphenyl) phosphite as a chain extender in melt-blended poly(hydroxybutyrate-co-hydroxyvalerate)/clay nanocomposites: Morphology, thermal stability, and mechanical properties. Journal of Applied Polymer Science, 133(2), n/a-n/a. doi:10.1002/app.42390 es_ES
dc.description.references Neppalli, R., Causin, V., Marega, C., Modesti, M., Adhikari, R., Scholtyssek, S., … Marigo, A. (2014). The effect of different clays on the structure, morphology and degradation behavior of poly(lactic acid). Applied Clay Science, 87, 278-284. doi:10.1016/j.clay.2013.11.029 es_ES
dc.description.references Wu, J., Zou, X., Jing, B., & Dai, W. (2014). Effect of sepiolite on the crystallization behavior of biodegradable poly(lactic acid) as an efficient nucleating agent. Polymer Engineering & Science, 55(5), 1104-1112. doi:10.1002/pen.23981 es_ES
dc.description.references Nuzzo, A., Bilotti, E., Peijs, T., Acierno, D., & Filippone, G. (2014). Nanoparticle-induced co-continuity in immiscible polymer blends – A comparative study on bio-based PLA-PA11 blends filled with organoclay, sepiolite, and carbon nanotubes. Polymer, 55(19), 4908-4919. doi:10.1016/j.polymer.2014.07.036 es_ES
dc.description.references M.D. Samper-Madrigal O. Fenollar F. Dominici R. Balart J.M. Kenny 50 863 872 2014 es_ES
dc.description.references J.B. Olivato J. Marini E. Pollet F. Yamashita M.V.E. Grossmann L. Avérous 118 250 2015 es_ES
dc.description.references H.E. Miltner N. Watzeels N.A. Gotzen A.L. Goffin E. Duquesne S. Benali B. Ruelle S. Peeterbroeck P. Dubois B. Goderis G. Van Assche H. Rahier B. Van Mele 53 1494 2012 es_ES
dc.description.references Brigatti, M. F., Galan, E., & Theng, B. K. G. (2006). Chapter 2 Structures and Mineralogy of Clay Minerals. Handbook of Clay Science, 19-86. doi:10.1016/s1572-4352(05)01002-0 es_ES
dc.description.references Moazeni, N., Mohamad, Z., & Dehbari, N. (2014). Study of silane treatment on poly-lactic acid(PLA)/sepiolite nanocomposite thin films. Journal of Applied Polymer Science, 132(6), n/a-n/a. doi:10.1002/app.41428 es_ES
dc.description.references Sabzi, M., Jiang, L., Atai, M., & Ghasemi, I. (2012). PLA/sepiolite and PLA/calcium carbonate nanocomposites: A comparison study. Journal of Applied Polymer Science, 129(4), 1734-1744. doi:10.1002/app.38866 es_ES
dc.description.references Fukushima, K., Tabuani, D., Abbate, C., Arena, M., & Ferreri, L. (2010). Effect of sepiolite on the biodegradation of poly(lactic acid) and polycaprolactone. Polymer Degradation and Stability, 95(10), 2049-2056. doi:10.1016/j.polymdegradstab.2010.07.004 es_ES
dc.description.references Liu, M., Pu, M., & Ma, H. (2012). Preparation, structure and thermal properties of polylactide/sepiolite nanocomposites with and without organic modifiers. Composites Science and Technology, 72(13), 1508-1514. doi:10.1016/j.compscitech.2012.05.017 es_ES
dc.description.references Nuñez, K., Rosales, C., Perera, R., Villarreal, N., & Pastor, J. M. (2011). Nanocomposites of PLA/PP blends based on sepiolite. Polymer Bulletin, 67(9), 1991-2016. doi:10.1007/s00289-011-0616-7 es_ES
dc.description.references Nuñez, K., Rosales, C., Perera, R., Villarreal, N., & Pastor, J. M. (2011). Poly(lactic acid)/low-density polyethylene blends and its nanocomposites based on sepiolite. Polymer Engineering & Science, 52(5), 988-1004. doi:10.1002/pen.22168 es_ES
dc.description.references Alata, H., Aoyama, T., & Inoue, Y. (2007). Effect of Aging on the Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 40(13), 4546-4551. doi:10.1021/ma070418i es_ES
dc.description.references Sanchez-Garcia, M. D., & Lagaron, J. M. (2010). Novel clay-based nanobiocomposites of biopolyesters with synergistic barrier to UV light, gas, and vapour. Journal of Applied Polymer Science, 118(1), 188-199. doi:10.1002/app.31986 es_ES
dc.description.references Darder, M., López-Blanco, M., Aranda, P., Aznar, A. J., Bravo, J., & Ruiz-Hitzky, E. (2006). Microfibrous Chitosan−Sepiolite Nanocomposites. Chemistry of Materials, 18(6), 1602-1610. doi:10.1021/cm0523642 es_ES
dc.description.references Wang, B., Wan, T., & Zeng, W. (2011). Dynamic rheology and morphology of polylactide/organic montmorillonite nanocomposites. Journal of Applied Polymer Science, 121(2), 1032-1039. doi:10.1002/app.33717 es_ES
dc.description.references T.A. Osswald Polymer Processing Fundamentals, Hanser, Munich 1998 es_ES
dc.description.references Grassie, N., Murray, E. J., & Holmes, P. A. (1984). The thermal degradation of poly(-(d)-β-hydroxybutyric acid): Part 3—The reaction mechanism. Polymer Degradation and Stability, 6(3), 127-134. doi:10.1016/0141-3910(84)90032-6 es_ES
dc.description.references Kopinke, F.-D., & Mackenzie, K. (1997). Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(β-hydroxybutyric acid). Journal of Analytical and Applied Pyrolysis, 40-41, 43-53. doi:10.1016/s0165-2370(97)00022-3 es_ES
dc.description.references Van Dommelen, J. A. ., Brekelmans, W. A. ., & Baaijens, F. P. . (2003). Micromechanical modeling of particle-toughening of polymers by locally induced anisotropy. Mechanics of Materials, 35(9), 845-863. doi:10.1016/s0167-6636(02)00307-1 es_ES
dc.description.references Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2014). Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. Journal of Food Engineering, 127, 1-9. doi:10.1016/j.jfoodeng.2013.11.022 es_ES
dc.description.references Galan, E. (1996). Properties and applications of palygorskite-sepiolite clays. Clay Minerals, 31(4), 443-453. doi:10.1180/claymin.1996.031.4.01 es_ES
dc.description.references Russo, P., Cammarano, S., Bilotti, E., Peijs, T., Cerruti, P., & Acierno, D. (2013). Physical properties of poly lactic acid/clay nanocomposite films: Effect of filler content and annealing treatment. Journal of Applied Polymer Science, 131(2), n/a-n/a. doi:10.1002/app.39798 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem