- -

Effect of the addition of sepiolite on the morphology and properties of melt compounded PHBV/PLA blends

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of the addition of sepiolite on the morphology and properties of melt compounded PHBV/PLA blends

Mostrar el registro completo del ítem

González-Ausejo, J.; Gámez-Pérez, J.; Balart, R.; Lagarón, JM.; Cabedo, L. (2019). Effect of the addition of sepiolite on the morphology and properties of melt compounded PHBV/PLA blends. Polymer Composites. 40(S1):E156-E168. https://doi.org/10.1002/pc.24538

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144824

Ficheros en el ítem

Metadatos del ítem

Título: Effect of the addition of sepiolite on the morphology and properties of melt compounded PHBV/PLA blends
Autor: González-Ausejo, Jennifer Gámez-Pérez, José Balart, Rafael Lagarón, José María Cabedo, Luis
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] A study concerning the incorporation of sepiolite in blends of biopolyesters (PHBV/PLA) to obtain clay/polymer nanocomposites (CPN) was performed to improve the gas barrier performance of the final materials and achieve ...[+]
Palabras clave: Poly(lactic Acid) , Mechanical properties , Functional properties , Thermal degradation , Barrier properties , Nanocomposites , Clay , Polyhydroxyalkanoates , Montmorillonite , Rheology
Derechos de uso: Cerrado
Fuente:
Polymer Composites. (issn: 0272-8397 )
DOI: 10.1002/pc.24538
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/pc.24538
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-2-R/ES/DESARROLLO Y CARACTERIZACION DE UN MULTICAPA BIODEGRADABLE DE ALTA BARRERA CON PROPIEDADES ACTIVAS Y BIOACTIVAS PARA ENVASADO ALIMENTARIO/
info:eu-repo/grantAgreement/UJI//PREDOC%2F2012%2F32/
info:eu-repo/grantAgreement/UJI//UJI-B2016-35/
Agradecimientos:
Contract grant sponsor: Ministerio de Economia y Competitividad; contract grant number: AGL2015-63855-C2-2-R; contract grant sponsor: Pla de Promocio de la Investigacio de la Universitat Jaume I; contract grant numbers: ...[+]
Tipo: Artículo

References

Matusik, J., Stodolak, E., & Bahranowski, K. (2011). Synthesis of polylactide/clay composites using structurally different kaolinites and kaolinite nanotubes. Applied Clay Science, 51(1-2), 102-109. doi:10.1016/j.clay.2010.11.010

Magalhães, N. F., Dahmouche, K., Lopes, G. K., & Andrade, C. T. (2013). Using an organically-modified montmorillonite to compatibilize a biodegradable blend. Applied Clay Science, 72, 1-8. doi:10.1016/j.clay.2012.12.008

Botana, A., Mollo, M., Eisenberg, P., & Torres Sanchez, R. M. (2010). Effect of modified montmorillonite on biodegradable PHB nanocomposites. Applied Clay Science, 47(3-4), 263-270. doi:10.1016/j.clay.2009.11.001 [+]
Matusik, J., Stodolak, E., & Bahranowski, K. (2011). Synthesis of polylactide/clay composites using structurally different kaolinites and kaolinite nanotubes. Applied Clay Science, 51(1-2), 102-109. doi:10.1016/j.clay.2010.11.010

Magalhães, N. F., Dahmouche, K., Lopes, G. K., & Andrade, C. T. (2013). Using an organically-modified montmorillonite to compatibilize a biodegradable blend. Applied Clay Science, 72, 1-8. doi:10.1016/j.clay.2012.12.008

Botana, A., Mollo, M., Eisenberg, P., & Torres Sanchez, R. M. (2010). Effect of modified montmorillonite on biodegradable PHB nanocomposites. Applied Clay Science, 47(3-4), 263-270. doi:10.1016/j.clay.2009.11.001

Khanna, S., & Srivastava, A. K. (2005). Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry, 40(2), 607-619. doi:10.1016/j.procbio.2004.01.053

Serafim, L. S., Lemos, P. C., Oliveira, R., & Reis, M. A. M. (2004). Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnology and Bioengineering, 87(2), 145-160. doi:10.1002/bit.20085

Reis, M. A. M., Serafim, L. S., Lemos, P. C., Ramos, A. M., Aguiar, F. R., & Van Loosdrecht, M. C. M. (2003). Production of polyhydroxyalkanoates by mixed microbial cultures. Bioprocess and Biosystems Engineering, 25(6), 377-385. doi:10.1007/s00449-003-0322-4

REHM, B. H. A. (2003). Polyester synthases: natural catalysts for plastics. Biochemical Journal, 376(1), 15-33. doi:10.1042/bj20031254

Cava, D., Giménez, E., Gavara, R., & Lagaron, J. M. (2006). Comparative Performance and Barrier Properties of Biodegradable Thermoplastics and Nanobiocomposites versus PET for Food Packaging Applications. Journal of Plastic Film & Sheeting, 22(4), 265-274. doi:10.1177/8756087906071354

Corre, Y.-M., Bruzaud, S., Audic, J.-L., & Grohens, Y. (2012). Morphology and functional properties of commercial polyhydroxyalkanoates: A comprehensive and comparative study. Polymer Testing, 31(2), 226-235. doi:10.1016/j.polymertesting.2011.11.002

Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polymer Letters, 8(11), 791-808. doi:10.3144/expresspolymlett.2014.82

Kunioka, M., Tamaki, A., & Doi, Y. (1989). Crystalline and thermal properties of bacterial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules, 22(2), 694-697. doi:10.1021/ma00192a031

Giménez, E., Lagarón, J. M., Cabedo, L., Gavara, R., & Saura, J. J. (2004). Study of the thermoformability of ethylene-vinyl alcohol copolymer based barrier blends of interest in food packaging applications. Journal of Applied Polymer Science, 91(6), 3851-3855. doi:10.1002/app.13584

Giménez, E., Lagarón, J. M., Maspoch, M. L., Cabedo, L., & Saura, J. J. (2004). Uniaxial tensile behavior and thermoforming characteristics of high barrier EVOH-based blends of interest in food packaging. Polymer Engineering & Science, 44(3), 598-608. doi:10.1002/pen.20054

Rasal, R. M., Janorkar, A. V., & Hirt, D. E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338-356. doi:10.1016/j.progpolymsci.2009.12.003

Cailloux, J., Santana, O. O., Franco-Urquiza, E., Bou, J. J., Carrasco, F., Gamez-Perez, J., & Maspoch, M. L. (2013). Sheets of branched poly(lactic acid) obtained by one step reactive extrusion calendering process: Melt rheology analysis. Express Polymer Letters, 7(3), 304-318. doi:10.3144/expresspolymlett.2013.27

Zembouai, I., Bruzaud, S., Kaci, M., Benhamida, A., Corre, Y.-M., Grohens, Y., & Lopez-Cuesta, J.-M. (2013). Synergistic effect of compatibilizer and cloisite 30B on the functional properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polylactide blends. Polymer Engineering & Science, 54(10), 2239-2251. doi:10.1002/pen.23776

Mofokeng, J. P., & Luyt, A. S. (2015). Dynamic mechanical properties of PLA/PHBV, PLA/PCL, PHBV/PCL blends and their nanocomposites with TiO2 as nanofiller. Thermochimica Acta, 613, 41-53. doi:10.1016/j.tca.2015.05.019

Mofokeng, J. P., & Luyt, A. S. (2015). Morphology and thermal degradation studies of melt-mixed PLA/PHBV biodegradable polymer blend nanocomposites with TiO2as filler. Journal of Applied Polymer Science, 132(25), n/a-n/a. doi:10.1002/app.42138

Zhao, H., Cui, Z., Wang, X., Turng, L.-S., & Peng, X. (2013). Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/Clay nanocomposites. Composites Part B: Engineering, 51, 79-91. doi:10.1016/j.compositesb.2013.02.034

Monfared, A., & Jalali-Arani, A. (2015). Morphology and rheology of (styrene-butadiene rubber/acrylonitrile-butadiene rubber) blends filled with organoclay: The effect of nanoparticle localization. Applied Clay Science, 108, 1-11. doi:10.1016/j.clay.2015.02.012

Huitric, J., Ville, J., Médéric, P., Moan, M., & Aubry, T. (2009). Rheological, morphological and structural properties of PE/PA/nanoclay ternary blends: Effect of clay weight fraction. Journal of Rheology, 53(5), 1101-1119. doi:10.1122/1.3153551

Bitinis, N., Fortunati, E., Verdejo, R., Armentano, I., Torre, L., Kenny, J. M., & López-Manchado, M. Á. (2014). Thermal and bio-disintegration properties of poly(lactic acid)/natural rubber/organoclay nanocomposites. Applied Clay Science, 93-94, 78-84. doi:10.1016/j.clay.2014.02.024

Bouakaz, B. S., Pillin, I., Habi, A., & Grohens, Y. (2015). Synergy between fillers in organomontmorillonite/graphene–PLA nanocomposites. Applied Clay Science, 116-117, 69-77. doi:10.1016/j.clay.2015.08.017

González-Ausejo, J., Sánchez-Safont, E., Gámez-Pérez, J., & Cabedo, L. (2015). On the use of tris(nonylphenyl) phosphite as a chain extender in melt-blended poly(hydroxybutyrate-co-hydroxyvalerate)/clay nanocomposites: Morphology, thermal stability, and mechanical properties. Journal of Applied Polymer Science, 133(2), n/a-n/a. doi:10.1002/app.42390

Neppalli, R., Causin, V., Marega, C., Modesti, M., Adhikari, R., Scholtyssek, S., … Marigo, A. (2014). The effect of different clays on the structure, morphology and degradation behavior of poly(lactic acid). Applied Clay Science, 87, 278-284. doi:10.1016/j.clay.2013.11.029

Wu, J., Zou, X., Jing, B., & Dai, W. (2014). Effect of sepiolite on the crystallization behavior of biodegradable poly(lactic acid) as an efficient nucleating agent. Polymer Engineering & Science, 55(5), 1104-1112. doi:10.1002/pen.23981

Nuzzo, A., Bilotti, E., Peijs, T., Acierno, D., & Filippone, G. (2014). Nanoparticle-induced co-continuity in immiscible polymer blends – A comparative study on bio-based PLA-PA11 blends filled with organoclay, sepiolite, and carbon nanotubes. Polymer, 55(19), 4908-4919. doi:10.1016/j.polymer.2014.07.036

M.D. Samper-Madrigal O. Fenollar F. Dominici R. Balart J.M. Kenny 50 863 872 2014

J.B. Olivato J. Marini E. Pollet F. Yamashita M.V.E. Grossmann L. Avérous 118 250 2015

H.E. Miltner N. Watzeels N.A. Gotzen A.L. Goffin E. Duquesne S. Benali B. Ruelle S. Peeterbroeck P. Dubois B. Goderis G. Van Assche H. Rahier B. Van Mele 53 1494 2012

Brigatti, M. F., Galan, E., & Theng, B. K. G. (2006). Chapter 2 Structures and Mineralogy of Clay Minerals. Handbook of Clay Science, 19-86. doi:10.1016/s1572-4352(05)01002-0

Moazeni, N., Mohamad, Z., & Dehbari, N. (2014). Study of silane treatment on poly-lactic acid(PLA)/sepiolite nanocomposite thin films. Journal of Applied Polymer Science, 132(6), n/a-n/a. doi:10.1002/app.41428

Sabzi, M., Jiang, L., Atai, M., & Ghasemi, I. (2012). PLA/sepiolite and PLA/calcium carbonate nanocomposites: A comparison study. Journal of Applied Polymer Science, 129(4), 1734-1744. doi:10.1002/app.38866

Fukushima, K., Tabuani, D., Abbate, C., Arena, M., & Ferreri, L. (2010). Effect of sepiolite on the biodegradation of poly(lactic acid) and polycaprolactone. Polymer Degradation and Stability, 95(10), 2049-2056. doi:10.1016/j.polymdegradstab.2010.07.004

Liu, M., Pu, M., & Ma, H. (2012). Preparation, structure and thermal properties of polylactide/sepiolite nanocomposites with and without organic modifiers. Composites Science and Technology, 72(13), 1508-1514. doi:10.1016/j.compscitech.2012.05.017

Nuñez, K., Rosales, C., Perera, R., Villarreal, N., & Pastor, J. M. (2011). Nanocomposites of PLA/PP blends based on sepiolite. Polymer Bulletin, 67(9), 1991-2016. doi:10.1007/s00289-011-0616-7

Nuñez, K., Rosales, C., Perera, R., Villarreal, N., & Pastor, J. M. (2011). Poly(lactic acid)/low-density polyethylene blends and its nanocomposites based on sepiolite. Polymer Engineering & Science, 52(5), 988-1004. doi:10.1002/pen.22168

Alata, H., Aoyama, T., & Inoue, Y. (2007). Effect of Aging on the Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 40(13), 4546-4551. doi:10.1021/ma070418i

Sanchez-Garcia, M. D., & Lagaron, J. M. (2010). Novel clay-based nanobiocomposites of biopolyesters with synergistic barrier to UV light, gas, and vapour. Journal of Applied Polymer Science, 118(1), 188-199. doi:10.1002/app.31986

Darder, M., López-Blanco, M., Aranda, P., Aznar, A. J., Bravo, J., & Ruiz-Hitzky, E. (2006). Microfibrous Chitosan−Sepiolite Nanocomposites. Chemistry of Materials, 18(6), 1602-1610. doi:10.1021/cm0523642

Wang, B., Wan, T., & Zeng, W. (2011). Dynamic rheology and morphology of polylactide/organic montmorillonite nanocomposites. Journal of Applied Polymer Science, 121(2), 1032-1039. doi:10.1002/app.33717

T.A. Osswald Polymer Processing Fundamentals, Hanser, Munich 1998

Grassie, N., Murray, E. J., & Holmes, P. A. (1984). The thermal degradation of poly(-(d)-β-hydroxybutyric acid): Part 3—The reaction mechanism. Polymer Degradation and Stability, 6(3), 127-134. doi:10.1016/0141-3910(84)90032-6

Kopinke, F.-D., & Mackenzie, K. (1997). Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(β-hydroxybutyric acid). Journal of Analytical and Applied Pyrolysis, 40-41, 43-53. doi:10.1016/s0165-2370(97)00022-3

Van Dommelen, J. A. ., Brekelmans, W. A. ., & Baaijens, F. P. . (2003). Micromechanical modeling of particle-toughening of polymers by locally induced anisotropy. Mechanics of Materials, 35(9), 845-863. doi:10.1016/s0167-6636(02)00307-1

Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2014). Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. Journal of Food Engineering, 127, 1-9. doi:10.1016/j.jfoodeng.2013.11.022

Galan, E. (1996). Properties and applications of palygorskite-sepiolite clays. Clay Minerals, 31(4), 443-453. doi:10.1180/claymin.1996.031.4.01

Russo, P., Cammarano, S., Bilotti, E., Peijs, T., Cerruti, P., & Acierno, D. (2013). Physical properties of poly lactic acid/clay nanocomposite films: Effect of filler content and annealing treatment. Journal of Applied Polymer Science, 131(2), n/a-n/a. doi:10.1002/app.39798

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem