- -

Triplet photosensitization mechanism of thymine by an oxidized nucleobase: from a dimeric model to DNA environment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Triplet photosensitization mechanism of thymine by an oxidized nucleobase: from a dimeric model to DNA environment

Mostrar el registro completo del ítem

Francés-Monerris, A.; Hognon, C.; Miranda Alonso, MÁ.; Lhiaubet, VL.; Monari, A. (2018). Triplet photosensitization mechanism of thymine by an oxidized nucleobase: from a dimeric model to DNA environment. Physical Chemistry Chemical Physics. 20(40):25666-25675. https://doi.org/10.1039/c8cp04866e

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145122

Ficheros en el ítem

Metadatos del ítem

Título: Triplet photosensitization mechanism of thymine by an oxidized nucleobase: from a dimeric model to DNA environment
Autor: Francés-Monerris, Antonio Hognon, Cécilia Miranda Alonso, Miguel Ángel Lhiaubet, Virginie Lyria Monari, Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Nucleic acids are constantly exposed to external agents that can induce chemical and photochemical damage. In spite of the great advances achieved in the last years, some molecular mechanisms of DNA damage are not ...[+]
Palabras clave: Cyclobutane Pyrimidine dimers , UV-Irradiated DNA , Molecular-Dynamics , Nucleic-Acids , 5-Methyl-2-Pyrimidone Deoxyribonucleoside , Biological consequences , Photodynamic therapy , Charge-Transfer , Singlet oxygen , Cellular-DNA
Derechos de uso: Cerrado
Fuente:
Physical Chemistry Chemical Physics. (issn: 1463-9076 )
DOI: 10.1039/c8cp04866e
Editorial:
The Royal Society of Chemistry
Versión del editor: http://doi.org/10.1039/c8cp04866e
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87054-C2-2-P/ES/FOTOFISICA DE SISTEMAS ORGANICOS DE TRANSFERENCIA DE CARGA INNOVADORES/
info:eu-repo/grantAgreement/MINECO//CTQ2015-70164-P/ES/LESIONES DEL ADN COMO FOTOSENSIBILIZADORES INTRINSECOS - CONCEPTO DE CABALLO DE TROYA/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/
Agradecimientos:
A. F. M. is grateful to Région Grand Est government (France) for the financial support. Spanish government (CTQ2015-70164P and CTQ2017-87054-C2-2-P projects) and Regional government (Prometeo/2017/075) are also acknowledged.[+]
Tipo: Artículo

References

Dumont, E., & Monari, A. (2015). Understanding DNA under oxidative stress and sensitization: the role of molecular modeling. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00043

Lomax, M. E., Folkes, L. K., & O’Neill, P. (2013). Biological Consequences of Radiation-induced DNA Damage: Relevance to Radiotherapy. Clinical Oncology, 25(10), 578-585. doi:10.1016/j.clon.2013.06.007

Magnander, K., & Elmroth, K. (2012). Biological consequences of formation and repair of complex DNA damage. Cancer Letters, 327(1-2), 90-96. doi:10.1016/j.canlet.2012.02.013 [+]
Dumont, E., & Monari, A. (2015). Understanding DNA under oxidative stress and sensitization: the role of molecular modeling. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00043

Lomax, M. E., Folkes, L. K., & O’Neill, P. (2013). Biological Consequences of Radiation-induced DNA Damage: Relevance to Radiotherapy. Clinical Oncology, 25(10), 578-585. doi:10.1016/j.clon.2013.06.007

Magnander, K., & Elmroth, K. (2012). Biological consequences of formation and repair of complex DNA damage. Cancer Letters, 327(1-2), 90-96. doi:10.1016/j.canlet.2012.02.013

Drouin, R., & Therrien, J.-P. (1997). UVB-induced Cyclobutane Pyrimidine Dimer Frequency Correlates with Skin Cancer Mutational Hotspots in p53. Photochemistry and Photobiology, 66(5), 719-726. doi:10.1111/j.1751-1097.1997.tb03213.x

Huang, X. X., Bernerd, F., & Halliday, G. M. (2009). Ultraviolet A within Sunlight Induces Mutations in the Epidermal Basal Layer of Engineered Human Skin. The American Journal of Pathology, 174(4), 1534-1543. doi:10.2353/ajpath.2009.080318

Pfeifer, G. P., You, Y.-H., & Besaratinia, A. (2005). Mutations induced by ultraviolet light. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571(1-2), 19-31. doi:10.1016/j.mrfmmm.2004.06.057

Durbeej, B., & Eriksson, L. A. (2003). On the Formation of Cyclobutane Pyrimidine Dimers in UV-irradiated DNA: Why are Thymines More Reactive?¶. Photochemistry and Photobiology, 78(2), 159. doi:10.1562/0031-8655(2003)078<0159:otfocp>2.0.co;2

Bucher, D. B., Schlueter, A., Carell, T., & Zinth, W. (2014). Watson-Crick Base Pairing Controls Excited-State Decay in Natural DNA. Angewandte Chemie International Edition, 53(42), 11366-11369. doi:10.1002/anie.201406286

Cadet, J., Sage, E., & Douki, T. (2005). Ultraviolet radiation-mediated damage to cellular DNA. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571(1-2), 3-17. doi:10.1016/j.mrfmmm.2004.09.012

Sinha, R. P., & Häder, D.-P. (2002). UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences, 1(4), 225-236. doi:10.1039/b201230h

Cadet, J., & Wagner, J. R. (2013). DNA Base Damage by Reactive Oxygen Species, Oxidizing Agents, and UV Radiation. Cold Spring Harbor Perspectives in Biology, 5(2), a012559-a012559. doi:10.1101/cshperspect.a012559

Grollman, A. P., & Moriya, M. (1993). Mutagenesis by 8-oxoguanine: an enemy within. Trends in Genetics, 9(7), 246-249. doi:10.1016/0168-9525(93)90089-z

Nikitaki, Z., Hellweg, C. E., Georgakilas, A. G., & Ravanat, J.-L. (2015). Stress-induced DNA damage biomarkers: applications and limitations. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00035

Dumont, E., Grüber, R., Bignon, E., Morell, C., Moreau, Y., Monari, A., & Ravanat, J.-L. (2015). Probing the reactivity of singlet oxygen with purines. Nucleic Acids Research, 44(1), 56-62. doi:10.1093/nar/gkv1364

Cadet, J., Delatour, T., Douki, T., Gasparutto, D., Pouget, J.-P., Ravanat, J.-L., & Sauvaigo, S. (1999). Hydroxyl radicals and DNA base damage. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 424(1-2), 9-21. doi:10.1016/s0027-5107(99)00004-4

Bellon, S., Shikazono, N., Cunniffe, S., Lomax, M., & O’Neill, P. (2009). Processing of thymine glycol in a clustered DNA damage site: mutagenic or cytotoxic. Nucleic Acids Research, 37(13), 4430-4440. doi:10.1093/nar/gkp422

Rogstad, D. K., Heo, J., Vaidehi, N., Goddard, W. A., Burdzy, A., & Sowers, L. C. (2004). 5-Formyluracil-Induced Perturbations of DNA Function†. Biochemistry, 43(19), 5688-5697. doi:10.1021/bi030247j

Epe, B. (2012). DNA damage spectra induced by photosensitization. Photochem. Photobiol. Sci., 11(1), 98-106. doi:10.1039/c1pp05190c

Cadet, J., Douki, T., & Ravanat, J.-L. (2014). Oxidatively Generated Damage to Cellular DNA by UVB and UVA Radiation,. Photochemistry and Photobiology, 91(1), 140-155. doi:10.1111/php.12368

Marazzi, M., Wibowo, M., Gattuso, H., Dumont, E., Roca-Sanjuán, D., & Monari, A. (2016). Hydrogen abstraction by photoexcited benzophenone: consequences for DNA photosensitization. Physical Chemistry Chemical Physics, 18(11), 7829-7836. doi:10.1039/c5cp07938a

Bignon, E., Marazzi, M., Besancenot, V., Gattuso, H., Drouot, G., Morell, C., … Monari, A. (2017). Ibuprofen and ketoprofen potentiate UVA-induced cell death by a photosensitization process. Scientific Reports, 7(1). doi:10.1038/s41598-017-09406-8

Gattuso, H., Dumont, E., Marazzi, M., & Monari, A. (2016). Two-photon-absorption DNA sensitization via solvated electron production: unraveling photochemical pathways by molecular modeling and simulation. Physical Chemistry Chemical Physics, 18(27), 18598-18606. doi:10.1039/c6cp02592g

Zheng, Y.-C., Zheng, M.-L., Li, K., Chen, S., Zhao, Z.-S., Wang, X.-S., & Duan, X.-M. (2015). Novel carbazole-based two-photon photosensitizer for efficient DNA photocleavage in anaerobic condition using near-infrared light. RSC Advances, 5(1), 770-774. doi:10.1039/c4ra11133h

Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054e

Vendrell-Criado, V., Rodríguez-Muñiz, G. M., Yamaji, M., Lhiaubet-Vallet, V., Cuquerella, M. C., & Miranda, M. A. (2013). Two-Photon Chemistry from Upper Triplet States of Thymine. Journal of the American Chemical Society, 135(44), 16714-16719. doi:10.1021/ja408997j

Dumont, E., Wibowo, M., Roca-Sanjuán, D., Garavelli, M., Assfeld, X., & Monari, A. (2015). Resolving the Benzophenone DNA-Photosensitization Mechanism at QM/MM Level. The Journal of Physical Chemistry Letters, 6(4), 576-580. doi:10.1021/jz502562d

Gattuso, H., Dumont, E., Chipot, C., Monari, A., & Dehez, F. (2016). Thermodynamics of DNA: sensitizer recognition. Characterizing binding motifs with all-atom simulations. Physical Chemistry Chemical Physics, 18(48), 33180-33186. doi:10.1039/c6cp06078a

Washington, I., Brooks, C., Turro, N. J., & Nakanishi, K. (2004). Porphyrins As Photosensitizers To Enhance Night Vision. Journal of the American Chemical Society, 126(32), 9892-9893. doi:10.1021/ja0486317

Wang, K., Poon, C. T., Choi, C. Y., Wong, W.-K., Kwong, D. W. J., Yu, F. Q., … Li, Z. Y. (2012). Synthesis, circular dichroism, DNA cleavage and singlet oxygen photogeneration of 4-amidinophenyl porphyrins. Journal of Porphyrins and Phthalocyanines, 16(01), 85-92. doi:10.1142/s108842461100435x

Ethirajan, M., Chen, Y., Joshi, P., & Pandey, R. K. (2011). The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev., 40(1), 340-362. doi:10.1039/b915149b

Nyman, E. S., & Hynninen, P. H. (2004). Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 73(1-2), 1-28. doi:10.1016/j.jphotobiol.2003.10.002

Bonnett, R. (1995). Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chemical Society Reviews, 24(1), 19. doi:10.1039/cs9952400019

Li, M.-D., Su, T., Ma, J., Liu, M., Liu, H., Li, X., & Phillips, D. L. (2013). Phototriggered Release of a Leaving Group in Ketoprofen Derivatives via a Benzylic Carbanion Pathway, But not via a Biradical Pathway. Chemistry - A European Journal, 19(34), 11241-11250. doi:10.1002/chem.201300285

Musa, K. A. K., Matxain, J. M., & Eriksson, L. A. (2007). Mechanism of Photoinduced Decomposition of Ketoprofen. Journal of Medicinal Chemistry, 50(8), 1735-1743. doi:10.1021/jm060697k

Sánchez-Borges, M., Capriles-Hulett, A., & Caballero-Fonseca, F. (2005). Risk of skin reactions when using ibuprofen-based medicines. Expert Opinion on Drug Safety, 4(5), 837-848. doi:10.1517/14740338.4.5.837

Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2009). Photosensitized DNA Damage: The Case of Fluoroquinolones. Photochemistry and Photobiology, 85(4), 861-868. doi:10.1111/j.1751-1097.2009.00548.x

Colasson, B., Credi, A., & Ragazzon, G. (2016). Light-driven molecular machines based on ruthenium(II) polypyridine complexes: Strategies and recent advances. Coordination Chemistry Reviews, 325, 125-134. doi:10.1016/j.ccr.2016.02.012

Véry, T., Ambrosek, D., Otsuka, M., Gourlaouen, C., Assfeld, X., Monari, A., & Daniel, C. (2014). Photophysical Properties of Ruthenium(II) Polypyridyl DNA Intercalators: Effects of the Molecular Surroundings Investigated by Theory. Chemistry - A European Journal, 20(40), 12901-12909. doi:10.1002/chem.201402963

Chantzis, A., Very, T., Daniel, C., Monari, A., & Assfeld, X. (2013). Theoretical evidence of photo-induced charge transfer from DNA to intercalated ruthenium (II) organometallic complexes. Chemical Physics Letters, 578, 133-137. doi:10.1016/j.cplett.2013.05.068

Daniel, C. (2015). Photochemistry and photophysics of transition metal complexes: Quantum chemistry. Coordination Chemistry Reviews, 282-283, 19-32. doi:10.1016/j.ccr.2014.05.023

Ambrosek, D., Loos, P.-F., Assfeld, X., & Daniel, C. (2010). A theoretical study of Ru(II) polypyridyl DNA intercalatorsStructure and electronic absorption spectroscopy of [Ru(phen)2(dppz)]2+ and [Ru(tap)2(dppz)]2+ complexes intercalated in guanine–cytosine base pairs. Journal of Inorganic Biochemistry, 104(9), 893-901. doi:10.1016/j.jinorgbio.2010.04.002

Olmon, E. D., Sontz, P. A., Blanco-Rodríguez, A. M., Towrie, M., Clark, I. P., Vlček, A., & Barton, J. K. (2011). Charge Photoinjection in Intercalated and Covalently Bound [Re(CO)3(dppz)(py)]+–DNA Constructs Monitored by Time-Resolved Visible and Infrared Spectroscopy. Journal of the American Chemical Society, 133(34), 13718-13730. doi:10.1021/ja205568r

Fumanal, M., Vela, S., Gattuso, H., Monari, A., & Daniel, C. (2018). Absorption Spectroscopy and Photophysics of a ReI -dppz Probe for DNA-Mediated Charge Transport. Chemistry - A European Journal, 24(54), 14425-14435. doi:10.1002/chem.201801980

Garcia-Lainez, G., Martínez-Reig, A. M., Limones-Herrero, D., Consuelo Jiménez, M., Miranda, M. A., & Andreu, I. (2018). Photo(geno)toxicity changes associated with hydroxylation of the aromatic chromophores during diclofenac metabolism. Toxicology and Applied Pharmacology, 341, 51-55. doi:10.1016/j.taap.2018.01.005

Chiarelli-Neto, O., Ferreira, A. S., Martins, W. K., Pavani, C., Severino, D., Faião-Flores, F., … Baptista, M. S. (2014). Melanin Photosensitization and the Effect of Visible Light on Epithelial Cells. PLoS ONE, 9(11), e113266. doi:10.1371/journal.pone.0113266

Vendrell-Criado, V., Rodríguez-Muñiz, G. M., Cuquerella, M. C., Lhiaubet-Vallet, V., & Miranda, M. A. (2013). Photosensitization of DNA by 5-Methyl-2-Pyrimidone Deoxyribonucleoside: (6-4) Photoproduct as a Possible Trojan Horse. Angewandte Chemie International Edition, 52(25), 6476-6479. doi:10.1002/anie.201302176

Bignon, E., Gattuso, H., Morell, C., Dumont, E., & Monari, A. (2015). DNA Photosensitization by an «Insider»: Photophysics and Triplet Energy Transfer of 5-Methyl-2-pyrimidone Deoxyribonucleoside. Chemistry - A European Journal, 21(32), 11509-11516. doi:10.1002/chem.201501212

Dehez, F., Gattuso, H., Bignon, E., Morell, C., Dumont, E., & Monari, A. (2017). Conformational polymorphism or structural invariance in DNA photoinduced lesions: implications for repair rates. Nucleic Acids Research, 45(7), 3654-3662. doi:10.1093/nar/gkx148

Aparici-Espert, I., Garcia-Lainez, G., Andreu, I., Miranda, M. A., & Lhiaubet-Vallet, V. (2018). Oxidatively Generated Lesions as Internal Photosensitizers for Pyrimidine Dimerization in DNA. ACS Chemical Biology, 13(3), 542-547. doi:10.1021/acschembio.7b01097

Segarra-Martí, J., Francés-Monerris, A., Roca-Sanjuán, D., & Merchán, M. (2016). Assessment of the Potential Energy Hypersurfaces in Thymine within Multiconfigurational Theory: CASSCF vs. CASPT2. Molecules, 21(12), 1666. doi:10.3390/molecules21121666

Olaso-González, G., Roca-Sanjuán, D., Serrano-Andrés, L., & Merchán, M. (2006). Toward the understanding of DNA fluorescence: The singlet excimer of cytosine. The Journal of Chemical Physics, 125(23), 231102. doi:10.1063/1.2408411

Roca-Sanjuán, D., Olaso-González, G., González-Ramírez, I., Serrano-Andrés, L., & Merchán, M. (2008). Molecular Basis of DNA Photodimerization: Intrinsic Production of Cyclobutane Cytosine Dimers. Journal of the American Chemical Society, 130(32), 10768-10779. doi:10.1021/ja803068n

Climent, T., González-Ramírez, I., González-Luque, R., Merchán, M., & Serrano-Andrés, L. (2010). Cyclobutane Pyrimidine Photodimerization of DNA/RNA Nucleobases in the Triplet State. The Journal of Physical Chemistry Letters, 1(14), 2072-2076. doi:10.1021/jz100601p

Aquilante, F., Autschbach, J., Carlson, R. K., Chibotaru, L. F., Delcey, M. G., De Vico, L., … Lindh, R. (2015). Molcas8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. Journal of Computational Chemistry, 37(5), 506-541. doi:10.1002/jcc.24221

Hirata, S., & Head-Gordon, M. (1999). Time-dependent density functional theory within the Tamm–Dancoff approximation. Chemical Physics Letters, 314(3-4), 291-299. doi:10.1016/s0009-2614(99)01149-5

Martin, R. L. (2003). Natural transition orbitals. The Journal of Chemical Physics, 118(11), 4775-4777. doi:10.1063/1.1558471

Etienne, T., Assfeld, X., & Monari, A. (2014). Toward a Quantitative Assessment of Electronic Transitions’ Charge-Transfer Character. Journal of Chemical Theory and Computation, 10(9), 3896-3905. doi:10.1021/ct5003994

Etienne, T., Assfeld, X., & Monari, A. (2014). New Insight into the Topology of Excited States through Detachment/Attachment Density Matrices-Based Centroids of Charge. Journal of Chemical Theory and Computation, 10(9), 3906-3914. doi:10.1021/ct500400s

González-Ramírez, I., Roca-Sanjuán, D., Climent, T., Serrano-Pérez, J. J., Merchán, M., & Serrano-Andrés, L. (2010). On the photoproduction of DNA/RNA cyclobutane pyrimidine dimers. Theoretical Chemistry Accounts, 128(4-6), 705-711. doi:10.1007/s00214-010-0854-z

Serrano-Pérez, J. J., González-Ramírez, I., Coto, P. B., Merchán, M., & Serrano-Andrés, L. (2008). Theoretical Insight into the Intrinsic Ultrafast Formation of Cyclobutane Pyrimidine Dimers in UV-Irradiated DNA: Thymine versus Cytosine. The Journal of Physical Chemistry B, 112(45), 14096-14098. doi:10.1021/jp806794x

Malmqvist, P. Å., Roos, B. O., & Schimmelpfennig, B. (2002). The restricted active space (RAS) state interaction approach with spin–orbit coupling. Chemical Physics Letters, 357(3-4), 230-240. doi:10.1016/s0009-2614(02)00498-0

Roos, B. O., & Malmqvist, P.-�ke. (2004). Relativistic quantum chemistry: the multiconfigurational approach. Physical Chemistry Chemical Physics, 6(11), 2919. doi:10.1039/b401472n

Heß, B. A., Marian, C. M., Wahlgren, U., & Gropen, O. (1996). A mean-field spin-orbit method applicable to correlated wavefunctions. Chemical Physics Letters, 251(5-6), 365-371. doi:10.1016/0009-2614(96)00119-4

Christiansen, O., Gauss, J., & Schimmelpfennig, B. (2000). Spin-orbit coupling constants from coupled-cluster response theory. Physical Chemistry Chemical Physics, 2(5), 965-971. doi:10.1039/a908995k

Francés-Monerris, A., Segarra-Martí, J., Merchán, M., & Roca-Sanjuán, D. (2016). Theoretical study on the excited-state π-stacking versus intermolecular hydrogen-transfer processes in the guanine–cytosine/cytosine trimer. Theoretical Chemistry Accounts, 135(2). doi:10.1007/s00214-015-1762-z

Londesborough, M. G. S., Dolanský, J., Jelínek, T., Kennedy, J. D., Císařová, I., Kennedy, R. D., … Clegg, W. (2018). Substitution of the laser borane anti-B18H22 with pyridine: a structural and photophysical study of some unusually structured macropolyhedral boron hydrides. Dalton Transactions, 47(5), 1709-1725. doi:10.1039/c7dt03823b

Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., … Kollman, P. A. (1995). A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. Journal of the American Chemical Society, 117(19), 5179-5197. doi:10.1021/ja00124a002

Wang, J., Cieplak, P., & Kollman, P. A. (2000). How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry, 21(12), 1049-1074. doi:10.1002/1096-987x(200009)21:12<1049::aid-jcc3>3.0.co;2-f

Hopkins, C. W., Le Grand, S., Walker, R. C., & Roitberg, A. E. (2015). Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. Journal of Chemical Theory and Computation, 11(4), 1864-1874. doi:10.1021/ct5010406

Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., … Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781-1802. doi:10.1002/jcc.20289

Lavery, R., Moakher, M., Maddocks, J. H., Petkeviciute, D., & Zakrzewska, K. (2009). Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Research, 37(17), 5917-5929. doi:10.1093/nar/gkp608

Götz, A. W., Clark, M. A., & Walker, R. C. (2013). An extensible interface for QM/MM molecular dynamics simulations with AMBER. Journal of Computational Chemistry, 35(2), 95-108. doi:10.1002/jcc.23444

Giussani, A., Segarra-Martí, J., Roca-Sanjuán, D., & Merchán, M. (2013). Excitation of Nucleobases from a Computational Perspective I: Reaction Paths. Photoinduced Phenomena in Nucleic Acids I, 57-97. doi:10.1007/128_2013_501

Improta, R., Santoro, F., & Blancafort, L. (2016). Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. Chemical Reviews, 116(6), 3540-3593. doi:10.1021/acs.chemrev.5b00444

Matsika, S. (2014). Modified Nucleobases. Photoinduced Phenomena in Nucleic Acids I, 209-243. doi:10.1007/128_2014_532

Borin, A. C. (2018). Light and nucleobases: A good interaction for everybody. Journal of Luminescence, 198, 433-437. doi:10.1016/j.jlumin.2018.02.066

Conti, I., & Garavelli, M. (2018). Evolution of the Excitonic State of DNA Stacked Thymines: Intrabase ππ* → S0 Decay Paths Account for Ultrafast (Subpicosecond) and Longer (>100 ps) Deactivations. The Journal of Physical Chemistry Letters, 9(9), 2373-2379. doi:10.1021/acs.jpclett.8b00698

El-Sayed, M. A. (1968). Triplet state. Its radiative and nonradiative properties. Accounts of Chemical Research, 1(1), 8-16. doi:10.1021/ar50001a002

Privat, E. (1996). A proposed mechanism for the mutagenicity of 5-formyluracil. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 354(2), 151-156. doi:10.1016/0027-5107(96)00005-x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem